

Adaptive Interpolation-Based Model Checking

Chien-Yu (Leo) Lai, Cheng-Yin Wu, Chun-Yang (Ric) Huang 2014.1.23

Outline

- Introduction
- Adaptive IMC Framework
- Flexible Interpolation
- Experimental Results
- Conclusion

INTRODUCTION

Interpolation-Based Model Checking (IMC)¹

¹K. L. McMillan, Interpolation and SAT-based model checking (CAV 2003)

Too fine-grained

Two examples

Need for finer-grained abstraction

Need for coarser abstraction

Spurious counter-example

Previous Works – Single, Blind Granularities

• McMillan's IMC¹

- Depends only on the refutation proof

- NewITP²
 - Depends only on the strength of SAT/UNSAT generalizations

Two examples (review)

With single granularity, IMC hardly solves both of them

Need for finer-grained abstraction

Need for coarser abstraction

Spurious counter-example

ADAPTIVE IMC FRAMEWORK

Adaptive IMC Framework

FLEXIBLE INTERPOLATION BY REACHABILITY PARTITIONING

Reachability v.s. Granularity

 When I₀^T^{k-1}^T^R is UNSAT, not all clauses get involved with UNSAT proof

→Concrete transitions

Reachability v.s. Granularity

• If the reachability is smaller, more clauses are absent in UNSAT proof

Concrete transitions

• By just partitioning R into 2 slices

Concrete transitions

Constrains restricting the transitions from R₁ is missing

• Likewise

• The disjunction of the reachability becomes coarse than computing R's directly

ATR&R INTERPOLATION

2-Step Interpolation

1. Transition Relation Abstraction

2. Reachability Construction

ATR to ATR Circuit

• Extract UNSAT core on the last time-frame

ATR Circuit

• Record the presence of clauses in proof

Ternary Simulation

• Finds don't-care state variables

ATR Circuit Simulation

- Similar to ternary simulation
- Consider constrains absent in abstract transition relation

c doesn't imply b anymore

Interpolant Construction

• Iteratively Solve the previous states

After ATR circuit simulation

Adaptive IMC Framework (review)

What We Refine

• BMC step

• Interpolation Algorithm

EXPERIMENTAL RESULTS

Experiment Setup

- Intel(R) Xeon(R) CPU E5405, 2.00GHz
- 7GB memory, 15 minutes time-out
- hwmcc11nointel.7z

Downloaded from HWMCC website

- Initial number of slice: 1
 - Same as the McMillan's IMC

Comparison in total cases

Statistics in Detail

405 cases in total			
	AIMC	NewITP	McMillan
All Solved		179	
Solved only	20	14	7
Unsolved only	13	18	38
All Unsolved		116	
100 cases unsolved by PDR			
	AIMC	NewITP	McMillan
Solved	15	7	12

CONCLUSION

Contribution

• Adaptive interpolation framework

Abstraction degree manipulation

- Enhancement of IMC
 - Solve the most instances in total
 - Solve the most instances hard for PDR

Novelty

• Flexible interpolation by reachability partitioning

• 2-phase interpolation

 1-way SAT/UNSAT generalization by only one-time simulation

Thanks for Your Attention!