HIE-Block Latency Insertion Method for Fast Transient Simulation of Nonuniform Multiconductor Transmission Lines

Takahiro Takasaki

Dept. of Systems Eng., Graduate School of Eng., Shizuoka University

Tadatoshi Sekine

Dept. of Mechanical Eng., Shizuoka University

Hideki Asai

Nanovision Research Division, Research Institute of Electronics, Shizuoka University

Introduction

- Nonuniform MTLs
- Basic LIM & Block-LIM
- HIE-block-LIM
- Numerical Results
- Conclusion

Introduction

- High-density and high-frequency electronic circuits have been designed
 - Tightly coupled Multiconductor Transmission Lines (MTLs)

- Estimating those effects in a design stage
 - Circuit-based modeling and simulation techniques are adequate in terms of accuracy and efficiency
- SPICE-like simulators
 - Their algorithms with matrix operations are not efficient in transient simulation of a large network

Introduction

- Latency Insertion Method (LIM)
 - **Fast simulation technique**
 - It is based on an explicit leapfrog scheme

Block-LIM

- Fast simulation technique
- **I** It has been proposed to extend LIM to simulations of the MTLs

Since both methods are based on the explicit scheme, those have a strict numerical stability condition

Time step size becomes small if there exist small reactive elements in the circuit

Hybrid Implicit-Explicit (HIE) Finite-Difference time Domain (FDTD) Method

- To alleviate the CFL condition and generate a weakly conditionally stable electromagnetic field solver
- An implicit difference method is used with respect to the differential equations associated with the one direction

Geometry of the cavity-backed slot

Its model modeled by square mesh

Because the implicit method is unconditionally stable, a time step size depends only on large cell sizes in the horizontal directions

- In this presentation....
 - Propose <u>HIE-block-LIM</u> for nonuniform MTLs Combing the block LIM and HIE formulation
 - Apply the implicit scheme to <u>a local area</u>

The time step size can be chosen depending only on relatively-larger inductance component

Nonuniform MTLs

Circuit Structure

The cross-section view of the nonuniform MTLs

- *l* : Length of each trace in the top and bottom layers [mm]
- d : Length of vertical via [mm]
- *h* : Thickness of each dielectric layer [mm]
- ε_r : Relative permittivity of the dielectrics is 4.2
- Three metal layers: two traces, ground plane
- Dielectric: it is filled between the metal layers
- Vertical via: provide a signal path from top to bottom

Nonuniform MTLs

Circuit Structure

The equivalent circuit model of the entire MTL

- *R* : Resistance
- *L* : Inductance
- C: Capacitance
- G: Conductance

 L_M : Mutual inductance C_M : Mutual capacitance

Nonuniform MTLs

Circuit Structure

Three-dimensional equivalent circuit of the entire MTL

The high and low inductance parts mean the subcircuits with large and small inductance components, respectively, and correspond to the traces and vias.

The low inductance part is allocated in the y-direction, and the high inductance parts are allocated in the z-direction

Basic LIM Formulation

 LIM assumes that the circuit to be analyzed is composed of node topology and branch topology

Node topology

Branch topology

Basic LIM Formulation

 Kirchhoff's current law and Kirchhoff's voltage law are applied to the node topology and the branch topology

Basic LIM Formulation

Arranged alternately in every half time step

ASP-DAC

Basic LIM Formulation

Since LIM is based on the explicit leapfrog scheme, the maximum time step size Δt_{max} used in LIM is limited by

If the small reactive elements exist in the circuit, the efficiency of the basic LIM is reduced significantly

ASP-DAC

- **Block-LIM Formulation**
 - Block-LIM is suitable for a fast transient analysis of a tightly coupled circuit constructed by connecting a number of node blocks and branch blocks

The equivalent circuit model of the entire MTL

ASP-DAC

Block-LIM Formulation

- Node block is composed of node topologies coupled with each other by mutual capacitances
- Branch block is composed of branch topologies coupled with each other by mutual inductances

Node block

 $V_{a1} L_{1} \qquad K_{1} E_{1} V_{b1}$ $V_{a2} L_{1,2} \qquad K_{2} E_{2} V_{b2}$ $V_{a3} L_{3} \qquad K_{3} E_{3} V_{b3}$ $V_{an_{b}} L_{n_{b}} \qquad K_{n_{b}} E_{n_{b}} V_{bn_{b}}$

Branch block

Block-LIM Formulation

Node block

Branch block

HIE-Block Latency Insertion Method for Nonuniform MTLs

Block-LIM Formulation

The structure of the coefficient matrix of unknown voltages and currents

The coefficient matrix structure of unknown voltages and currents

$$\left(\frac{1}{\Delta t}\mathbf{C}_{a}+\mathbf{G}_{a}\right)\mathbf{v}_{a}^{n+\frac{1}{2}} = \frac{1}{\Delta t}\mathbf{C}_{a}\mathbf{v}_{a}^{n-\frac{1}{2}}-\mathbf{i}_{a}^{n}+\mathbf{h}_{a}^{n} \qquad (6)$$
$$\frac{1}{\Delta t}\mathbf{L}_{ab}\mathbf{i}_{ab}^{n+1} = \left(\frac{1}{\Delta t}\mathbf{L}_{ab}-\mathbf{R}_{ab}\right)\mathbf{i}_{ab}^{n}+\mathbf{v}_{ab}^{n+\frac{1}{2}}+\mathbf{e}_{ab}^{n+\frac{1}{2}} \qquad (7)$$

17/31

ASP-DAC

Block-LIM Formulation

□ Since block-LIM is based on the explicit leapfrog scheme, the maximum time step size Δt_{max} used in LIM is limited by

$$\Delta t_{\max} \leq \sqrt{2} \min_{a=1}^{N_N} \left(\sqrt{\frac{\boldsymbol{C_a}}{N_B^a}} \min_{b=1}^{N_B^a} (\boldsymbol{L_{ab}}) \right)$$
(5)

The maximum time step size of block LIM is restricted due directly to the small inductance in the low inductance part

ASP-DAC

We assume that the number of the signal traces is 128, and the traces and vias are divided into 5 branch blocks and 6 node blocks The branch block related to the current variables in the ydirection is defined as γ block

The node blocks connected to the γ block are defined as α and β blocks

Formulation

Because \mathbf{L}_{γ} and \mathbf{R}_{γ} are the relatively small block submatrices, the calculation od to cost to derive $\mathbf{i}_{\gamma}^{n+\frac{1}{2}}$ is not large

$$\mathbf{i}_{\gamma}^{n+\frac{1}{2}} = \left(\frac{1}{\Delta t}\mathbf{L}_{\gamma} + \mathbf{R}_{\gamma}\right)^{-1} \left(\mathbf{v}_{\alpha}^{n+\frac{1}{2}} - \mathbf{v}_{\beta}^{n+\frac{1}{2}} + \frac{1}{\Delta t}\mathbf{L}_{\gamma}\mathbf{i}_{\gamma}^{n-\frac{1}{2}} + \mathbf{e}_{\gamma}^{n+\frac{1}{2}}\right)$$
(11)

Second: (11) is substituted into (10) and rearranging the equations

$$\left(\frac{1}{\Delta t}\mathbf{C}_{\alpha}+\mathbf{G}_{\alpha}\right)\mathbf{v}_{\alpha}^{n+\frac{1}{2}} = \frac{1}{\Delta t}\mathbf{C}_{\alpha}\mathbf{v}_{\alpha}^{n-\frac{1}{2}} - \tilde{\mathbf{i}}_{\alpha}^{n} - \frac{\mathbf{i}_{\gamma}^{n+\frac{1}{2}}}{\mathbf{i}_{\gamma}^{n+\frac{1}{2}}} + \mathbf{h}_{\alpha}^{n}$$
$$\left(\frac{1}{\Delta t}\mathbf{C}_{\beta}+\mathbf{G}_{\beta}\right)\mathbf{v}_{\beta}^{n+\frac{1}{2}} = \frac{1}{\Delta t}\mathbf{C}_{\beta}\mathbf{v}_{\beta}^{n-\frac{1}{2}} - \mathbf{i}_{\beta}^{n} - \frac{\mathbf{i}_{\gamma}^{n+\frac{1}{2}}}{\mathbf{i}_{\gamma}^{n+\frac{1}{2}}} + \mathbf{h}_{\beta}^{n}$$
(10)

- There are \mathbf{v}_{α} and \mathbf{v}_{β} at the (*n*+1/2)-th step
- The node blocks α and β are correlated with each other through the branches between them due to the implicit formulation associated with the branch block γ

Formulation

The structures of the coefficient matrices of the entire circuit equations

- The node blocks connected to the branch block of the low inductance part are united with each other and become the single and locally dense block
- It is defined as the coupled block circuit
- The updating formula of the voltage variables in the coupled block circuit

 $\mathbf{T}_{\boldsymbol{\pi}_{\beta}} \mathbf{v}_{\beta}^{n+\frac{1}{\mathbf{K}}} = \begin{bmatrix} \mathbf{\hat{K}}_{\boldsymbol{\nu}_{\alpha}}^{n+\frac{1}{2}\frac{1}{2}} \\ \mathbf{\hat{K}}_{\boldsymbol{\nu}_{\alpha}}^{n+\frac{1}{2}\frac{1}{2}} \\ \mathbf{n}_{\alpha}^{n+\frac{1}{2}} \end{bmatrix} \equiv \frac{1}{\Delta t} \mathbf{C}_{\beta} \mathbf{v}_{\beta}^{n-\frac{1}{2}} - \mathbf{\tilde{i}}_{\beta}^{n} - \mathbf{\hat{K}} \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} + \mathbf{s}_{\beta} \\ \mathbf{T}_{\alpha} \mathbf{v}_{\alpha}^{n+\frac{1}{2}} - \mathbf{K} \mathbf{v}_{\beta}^{n+\frac{1}{2}} = \frac{1}{\Delta t} \mathbf{C}_{\alpha} \mathbf{v}_{\alpha}^{n-\frac{1}{2}} - \mathbf{\tilde{i}}_{\alpha}^{n} - \mathbf{\hat{K}} \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} + \mathbf{s}_{\alpha} \\ \frac{1}{\Delta t} \begin{bmatrix} \mathbf{C}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{\beta} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta}_{t}^{n-\frac{1}{2}} \\ \mathbf{v}_{\alpha}^{n-\frac{1}{2}} \\ \mathbf{v}_{\beta}^{n-\frac{1}{2}} \end{bmatrix} - \begin{bmatrix} \mathbf{\tilde{i}}_{\alpha}^{n} \\ \mathbf{\tilde{i}}_{\beta}^{n} \end{bmatrix} - \begin{bmatrix} \mathbf{\hat{K}} \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} \\ \mathbf{\hat{K}} \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} \mathbf{s}_{\alpha} \\ \mathbf{s}_{\beta} \end{bmatrix} \\ \text{ent} \\ \text{ations} \end{aligned}$ (12)

Formulation

The coupled block circuit

$$\begin{bmatrix} \mathbf{T}_{\alpha} & -\hat{\mathbf{K}} \\ -\hat{\mathbf{K}} & \mathbf{T}_{\beta} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\alpha}^{n+\frac{1}{2}} \\ \mathbf{v}_{\alpha}^{n+\frac{1}{2}} \\ \mathbf{v}_{\beta}^{n+\frac{1}{2}} \end{bmatrix} = \frac{1}{\Delta t} \begin{bmatrix} \mathbf{C}_{\alpha} & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{\beta} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{\alpha}^{n-\frac{1}{2}} \\ \mathbf{v}_{\beta}^{n-\frac{1}{2}} \end{bmatrix} - \begin{bmatrix} \mathbf{\tilde{i}}_{\alpha}^{n} \\ \mathbf{\tilde{i}}_{\beta}^{n} \end{bmatrix} - \begin{bmatrix} \mathbf{\tilde{k}} \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} \\ \mathbf{\tilde{k}} \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} \end{bmatrix} + \begin{bmatrix} \mathbf{s}_{\alpha} \\ \mathbf{s}_{\beta} \end{bmatrix}$$
(13)
$$\mathbf{\tilde{i}}_{\gamma}^{n+\frac{1}{2}} = \left(\frac{1}{\Delta t} \mathbf{L}_{\gamma} + \mathbf{R}_{\gamma}\right)^{-1} \left(\mathbf{v}_{\alpha}^{n+\frac{1}{2}} - \mathbf{v}_{\beta}^{n+\frac{1}{2}} + \frac{1}{\Delta t} \mathbf{L}_{\gamma} \mathbf{i}_{\gamma}^{n-\frac{1}{2}} + \mathbf{e}_{\gamma}^{n+\frac{1}{2}} \right)$$
(11)

The others block circuit

The maximum time step size used in HIE-block LIM depends only on the reactive elements in the high inductance parts

Example circuit (Equivalent circuit PDN)

Method	Maximum time step size
block-LIM	4.02 [ps]
HIE-block-LIM	26.6 [ps]

ASP-DAC

The proposed method can provide numerically stable solution even if the larger time step size is used

ASP-DAC

The proposed method is **3.9** times faster than

block-LIM without losing accuracy

- Supplemental explanation
 - It is expected that the proposed method can be used to simulate the power distribution network (PDN)
 - It has been proven that locally implicit (LI) LIM [1, 2] and block-LILIM [3], which are similar to the proposed method, are much faster than basic LIM and useful for the analysis of PDN

[1] H. Kurobe, T. Sekine, and H. Asai, "Locally implicit LIM for the simulation of PDN modeled by triangular meshes," *IEEE Microw. Wireless Compon. Lett.*, vol. 22, pp. 291–293, Jun. 2012.

[2] T. Takasaki, T. Sekine, and H. Asai, "Efficient PDN simulation by locally implicit latency insertion method based on rectangular meshes," in *Proc. IEEE EDAPS 2013*, Dec. 2013.

[3] S. Okada, T. Sekine, and H. Asai, "Locally implicit block-LIM for the simulation of multilayered PDN modeled by triangular meshes," in *Proc. AP-RASC 2013*, Sep. 2013, pp. 1–6.

Conclusion

HIE-block-LIM

- It is based on the block-LIM and HIE formulation
- The limit of the time step size could be alleviated by applying the implicit difference method with respect to the current variables in the y-direction
- Numerical results showed that the proposed method was faster than the block-LIM with appropriate accuracy

Thank you for your attention.