A Transaction-Oriented UVM-based Library for Verification of Analog Behavior

IEEE ASP-DAC 2014

Alexander W. Rath

infineon
Agenda

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
Agenda

- **Introduction**
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
Introduction

- In today’s chip design, analog parts shifted to digital design, because digital circuits scale better with new technologies
- This leads to mixed signal designs
- Historically, digital and analog parts are verified using totally different strategies
 - Analog parts are verified using network simulators
 - Digital parts are verified using event driven simulators
Introduction

- Digital Verification has become highly sophisticated
 - Constraint random stimulus
 - Self-checking testbenches
 - Functional coverage
 - Unified Verification Methodology (UVM)
- Analog Verification has not gone through the same evolution
 - Testbenches use directed stimulus and checking
 - Waveforms are checked using “eye-balling”
Introduction

- In our research, we target to leverage this discrepancy
- We show, how the aforementioned techniques from the digital verification can be mapped to and used in analog verification
Agenda

- Introduction
- **Idea of Analog Transactions**
 - Constraint Random Analog Stimulus
 - Monitoring Analog Behavior
 - Checking Analog Transactions
- Example
- Summary and Outlook
Idea of Analog Transactions

- Transactions are data structures
 - Containing potentially randomized fields
 - Providing abstraction from the protocol’s details
- The protocol is implemented separately in a driver
Idea of Analog Transactions

- How to transfer this approach to analog?
- Idea: Replace the term “protocol” by “shape”
- Signals can be of different shapes
 - Harmonic
 - Linear
 - Cubic Spline
Idea of Analog Transactions

- To name a shape is not sufficient to describe a signal
- Parameters are required → transaction
Agenda

- Introduction
- Idea of Analog Transactions
- **Constraint Random Analog Stimulus**
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
In UVM, transactions are converted to stimulus by drivers

We follow the same principle using a generic driver for analog stimulus

The algorithm that converts the transaction to signal level activity can be exchanged through a plug-in mechanism even at runtime

Communication between the generic driver and the algorithm is done via a predefined API

New algorithms implement this API
Constraint Random Analog Stimulus

- **pure virtual function void pre_process(a_uvm_data_structure data_str);**
 - For preparation, like opening connections to external tools
- **pure virtual function real get_real(real x);**
 - Computes the signal values
- **virtual function void post_process();**
 - Closing connections etc.
Constraint Random Analog Stimulus
Agenda

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
Monitoring Analog Behavior

- We followed the same principle as in driving
- Monitoring is more complicated than driving
 - Start of transaction has to be determined
 - Single vs. Multi threaded
- This leads to a more complex algorithm API
Monitoring Analog Behavior

- Determining the times T_1, T_2, and T_3 requires multi-threaded monitoring
- Trigger objects determine start of monitoring
 - Discontinuities
 - Threshold levels
 - Changes in frequency
 - …
Agenda

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
Checking Analog Transactions

- In order to check for functional correctness of the DUT, transactions must be compared – possibly inside of a scoreboard.
- In UVM, transactions are compared bitwise, field by field.
- This does not work for analog transactions.
 - When comparing analog behavior, a certain fuzziness is allowed.
 - Real-valued numbers can suffer from round-off errors which affect direct comparison.

    ```
    5.00000000000001
    ```
Checking Analog Transactions

- Fuzziness is hard to quantify
- As a first attempt, we used the cosine similarity to compare transactions

\[r(X, Y) = \frac{\sum_{i=0}^{n-1} X_i Y_i}{\sqrt{\sum_{i=0}^{n-1} (X_i)^2 \sum_{i=0}^{n-1} (Y_i)^2}} \]

- \(X \) and \(Y \) are the transactions and \(X_i \) and \(Y_i \) are their parameters
- \(r \) is between -1 and 1
Checking Analog Transactions

- Examples with $X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$:
 - $Y = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \Rightarrow r = 1$
 - $Y = -\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \Rightarrow r = -1$
 - $Y = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} \Rightarrow r = 0$
 - $Y = \begin{pmatrix} 1.2 \\ 1.8 \\ 3.3 \end{pmatrix} \Rightarrow r \approx 0.996$
Agenda

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
Example

- Voltage Regulator

Unmodified TL
- $\tilde{r} = 0.89$

Oscillation frequency reduced by factor 0.5
- $\tilde{r} = 0.24$
Agenda

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook
Summary and Outlook

- We presented a possible definition for analog transactions
- We showed, how this definition can be used to accomplish stimulation, monitoring and checking of analog circuitry or models
Thanks for attention!
Questions?