A Transaction-Oriented UVM-based Library for Verification of Analog Behavior

IEEE ASP-DAC 2014

Alexander W. Rath

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Introduction

- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Introduction

- In today's chip design, analog parts shifted to digital design, because digital circuits scale better with new technologies
- This leads to mixed signal designs
- Historically, digital and analog parts are verified using totally different strategies
 - Analog parts are verified using network simulators
 - Digital parts are verified using event driven simulators

Introduction

Digital Verification has become highly sophisticated

- Constraint random stimulus
- Self-checking testbenches
- Functional coverage
- Unified Verification Methodology (UVM)
- Analog Verification has not gone through the same evolution
 - Testbenches use directed stimulus and checking
 - Waveforms are checked using "eye-balling"

Introduction

- In our research, we target to leverage this discrepancy
- We show, how the aforementioned techniques from the digital verification can be mapped to and used in analog verification

Introduction

Idea of Analog Transactions

- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Idea of Analog Transactions

Transactions are data structures

- Containing potentially randomized fields
- Providing abstraction from the protocol's details
- The protocol is implemented separately in a driver

Idea of Analog Transactions

- How to transfer this approach to analog?
- Idea: Replace the term "protocol" by "shape"
- Signals can be of different shapes
 - Harmonic Linear **Cubic Spline**

Idea of Analog Transactions

- To name a shape is not sufficient to describe a signal
- Parameters are required \rightarrow transaction

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Constraint Random Analog Stimulus

- In UVM, transactions are converted to stimulus by drivers
- We follow the same principle using a generic driver for analog stimulus
- The algorithm that converts the transaction to signal level activity can be exchanged through a plug-in mechanism even at runtime
- Communication between the generic driver and the algorithm is done via a predefined API
- New algorithms implement this API

Constraint Random Analog Stimulus

- pure virtual function void pre_process(
 a_uvm_data_structure data_str);
 - For preparation, like opening connections to external tools
- pure virtual function real get_real(real x);
 - Computes the signal values
- virtual function void post_process();

Closing connections etc.

Constraint Random Analog Stimulus

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Monitoring Analog Behavior

- We followed the same principle as in driving
- Monitoring is more complicated than driving
 - Start of transaction has to be determined
 - Single vs. Multi threaded
- This leads to a more complex algorithm API

Monitoring Analog Behavior

- Determining the times T₁, T₂ and T₃ requires multithreaded monitoring
- Trigger objects determine start of monitoring
 - Discontinuities
 - Threshold levels
 - Changes in frequency

17

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Checking Analog Transactions

- In order to check for functional correctness of the DUT, transactions must be compared – possibly inside of a scoreboard
- In UVM, transactions are compared bitwise, field by field
- This does not work for analog transactions
 - When comparing analog behavior, a certain fuzziness is allowed
 - Real-valued numbers can suffer from round-off errors which affect direct comparison
 5 == 5.0000000000001

Checking Analog Transactions

- Fuzziness is hard to quantify
- As a first attempt, we used the cosine similarity to compare transactions

$$r(X,Y) = \frac{\sum_{i=0}^{n-1} X_i Y_i}{\sqrt{\sum_{i=0}^{n-1} (X_i)^2 \sum_{i=0}^{n-1} (Y_i)^2}}$$

- X and Y are the transactions and X_i and Y_i are their parameters
- r is between -1 and 1

Checking Analog Transactions

• Examples with
$$X = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
:

•
$$Y = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix} \Rightarrow r = 1$$

•
$$Y = -\begin{pmatrix} 1\\2\\3 \end{pmatrix} \Rightarrow r = -1$$

•
$$Y = \begin{pmatrix} 3 \\ 0 \\ -1 \end{pmatrix} \Rightarrow r = 0$$

•
$$Y = \begin{pmatrix} 1.2 \\ 1.8 \\ 3.3 \end{pmatrix} \Rightarrow r \approx 0.996$$

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Example

Voltage Regulator

- Introduction
- Idea of Analog Transactions
- Constraint Random Analog Stimulus
- Monitoring Analog Behavior
- Checking Analog Transactions
- Example
- Summary and Outlook

Summary and Outlook

- We presented a possible definition for analog transactions
- We showed, how this definition can be used to accomplish stimulation, monitoring and checking of analog circuitry or models

Thanks for attention! Questions?