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Need for Device Evaluation

 Traditional CMOS technologies are reaching physical
limits
- Many alternative emerging devices under

Investigation: TFET, CNT, Heterogeneous CMQOS, etc.

- need to be able quickly compare them to guide
technology development

* How should we compare emerging devices ?

— Comprehensive, systematic and automated comparison
In context of how they are going to be used

— Account for various design types and circuit-level optimizations
— Fast and flexible evaluation framework

— Cover the wide performance range (KHz to GHz)
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Prior Work

 Three classes of works
— Devices level‘®: |/l « Subthreshold Slope (SS ), CV/I, CV?

— Canonical circuit level: Simple circuits + Analytical model* based
power-delay tradeoff

— Full design flow: Library generation, Synthesis, Placement and
Routing
« Existing evaluation benchmarks neglect how modern

circuits really use devices = These can dramatically
change the conclusions.

— Circuit topology dependence (e.g., logic depth)

— Design-time power optimization (Multi-V,, and multiple gate sizes)
- Runtime adaptive power management (DVFS, Gating)

1L. Wei, et. al., IEDM, 2010
4D. J. Frank, et. al., IBM J, 2006
5M. Luisier, et. al., IEDM, 2011
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Outline

PROCEED Methodology

Example Experimental Results
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Proposed Framework: PROCEED

Wire capacitance, Logic depth
resistance, and chip histogram, Fan-out
area —_—

'

Canonical circuit ot
Interconnect model—— «—] Variation ‘u

construction information
g Gate siges Ratio of
' . throughput
Device model,
Activity - *
J
Pareto optimizer <« P Power management
V,s V., gate sizes
constraints
Delay and Throughput
power Pareto power Pareto
curves curves

NanoCAD Lab asp-bAc 2014



UCLA

Canonical Circuit Construction

Utilize essential design information
— Logic depth histogram, average number of transistors per gate,

average fan-out, average interconnect load and chip area

— Ignore detalled circuit design
| erformance evaluation
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» Logic depth histogram
= Simulation blocks (S))

— Construct logic paths in
corresponding bins

= Single stage
— Gate (Nand, XOR, etc.)

— Buffer, interconnect,
fan-out load

= Tuning parameters
— Gate sizes, Vg, Vi,
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Canonical Circult Constructlon

* Logic depth histogram is
estimated using slack
histogram

* |nterconnect

— Interconnect is proportional to
the square-root of chip areal

— Chip area is assumed to be
linear to cell area

— Cell area is modeled as a
function of transistor width
from DRE?

1J. A. Davis, et. al.,, IEEE TED, 1998.
2R. S. Ghaida and P. Gupta, |EEE Trans. CAD, 2012.
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Pareto Optimization:

Power
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Overview

* Objective functions are
weighted sum of delay and
power

— Non-convex problem
— Gradient descent used

« Delay and power are
approximated with second
order functions in trust
region

« Trust region shrinks during
optimization

* Logarithmic barrier is
Incorporated to confine
parameter range
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Pareto Optimization: Modeling

- Build simulation-block-level delay and power models by
utilizing circuit simulations results.

1

Dy ( Yio T 4Y, ) =Dg o+ Gy, + EAYiT Hp 4y,
1

Py ( Yio T 4Y, ) =Pt Gpi Ay, + EAyiT H; Ay,

* Objective delay is the longest delay of all logic paths
(constructed by simulation blocks)

— Using high order norm to estimate max-delay function

- This can make the objective function continuous for gradient
calculation

D(X):WD'max((D31(y1)’Dsz(y2) ----- DSn(yn)))z D'H(D31(y1)’Dsz(y2) ----- DSn(yn))

* Objective power is the weighted total power P = ZWi - P,
i=1
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Power Management: Overview

- Modern circuits allow devices to operate in three modes:
normal, power saving and sleep mode.

— A 2nd Jower V4 is applied to devices in power saving mode
— Device is turned off in sleeping mode

« Pick best 2"V, and optimally divide time spent on each mode
— Need input of the ratio of average throughput to peak throughput
— Use polynomial models for delay and power of simulation block
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Valldatlon of PROCEED
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Model3is frequently used for device evaluation

— Ignoring logic depth histogram and using analytical delay and power

models is inaccurate

Proposed methodology is 21X (average) more accurate
— Efficient to evaluate devices with performance range from MHz to GHz
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3D. J. Frank, et. al., IBM J, 2006
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Outline

PROCEED Methodology

Example Experimental Results
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Impact of Activity
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« Low activity circuit benefits low leakage devices

— TFET better than SOl MOSFET for low-activity, low-performance
circuits
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Impact of Circuit Topology
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CortexMO is more evenly distributed in LDH
Power consumption in MIPS is dominated by short logic paths
— More accommodating to low power devices ( TFETS)
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Impact of Power Management

- 45nm ARM CortexM0 with power managegnent
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« Peak throughput cross-points shift higher as ratio of average to
peak throughput decreases

— This indicates TFET may be a better device for applications with
wide dynamic range in performance needs
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Impact of Variation
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effective voltage drop

— TFET and SOl are assumed to
Vth worst case variation

— High Sub-threshold Slope (SS)
voltage drop

Variation evaluation indicates that TFET suffers more from

have peak 10% Vdd and 50mV

devices are more sensitive to

NanoCAD Lab asp-bAc 2014



UCLA

Conclusion

 Proposed new methodology for evaluating emerging devices
accounts for circuit topology, adaptivity, variability, and use
context

* Proposed methodology is efficient and accurate for device
evaluation over broad operating range.

— Effective Pareto -based optimization heuristic
— Accurate circuit simulation and device compact model
« Example comparison of TFET and SOI devices

— TFET is better for low activity, low logic depth and high
dynamic performance design

— TFET is more sensitive to voltage drop and threshold
voltage shifting

« Entire PROCEED source-code (MATLAB, C++) will be made
available openly.
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Q&A

Thanks!
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