

PROCEED: <u>Pareto Optimization-based</u> <u>Circuit-level Evaluation Methodology</u> for <u>Emerging D</u>evices

ASP-DAC 2014

Shaodi Wang, Andrew Pan, Chi-On Chui and Puneet Gupta Department of Electrical Engineering, University of California, Los Angeles

Need for Device Evaluation

- Traditional CMOS technologies are reaching physical limits
- Many alternative emerging devices under investigation: TFET, CNT, Heterogeneous CMOS, etc.
 → need to be able quickly compare them to guide technology development
- How should we compare emerging devices ?
 - Comprehensive, systematic and automated comparison in context of how they are going to be used
 - Account for various design types and circuit-level optimizations
 - Fast and flexible evaluation framework
 - Cover the wide performance range (KHz to GHz)

Prior Work

- Three classes of works
 - Devices level^{1,6}: I_{on}/I_{off} , Subthreshold Slope (SS), CV/I, CV²
 - Canonical circuit level: Simple circuits + Analytical model⁴ based power-delay tradeoff
 - Full design flow: Library generation, Synthesis, Placement and Routing
- Existing evaluation benchmarks neglect how modern circuits really use devices → <u>These can dramatically</u> <u>change the conclusions.</u>
 - Circuit topology dependence (e.g., logic depth)
 - Design-time power optimization (Multi- V_{th} and multiple gate sizes)
 - Runtime adaptive power management (DVFS, Gating)

¹L. Wei, et. al., IEDM, 2010 ⁴D. J. Frank, et. al., IBM J, 2006 ⁶M. Luisier, et. al., IEDM, 2011

Outline

PROCEED Methodology

Example Experimental Results

Proposed Framework: PROCEED

Canonical Circuit Construction

- Utilize essential design information ۲
 - Logic depth histogram, average number of transistors per gate, average fan-out, average interconnect load and chip area
 - Ignore detailed circuit design
 - Little impact on device performance evaluation

- Logic depth histogram
- Simulation blocks (S_i)
 - Construct logic paths in corresponding bins
- Single stage
 - Gate (Nand, XOR, etc.)
 - Buffer, interconnect, fan-out load
- **Tuning parameters**
 - Gate sizes, V_{dd} , V_{th}

Canonical Circuit Construction

 Logic depth histogram is estimated using slack histogram

Interconnect

- Interconnect is proportional to the square-root of chip area¹
- Chip area is assumed to be linear to cell area
- Cell area is modeled as a function of transistor width from DRE²

¹ J. A. Davis, et. al.,, *IEEE TED*, 1998.

² R. S. Ghaida and P. Gupta, *IEEE Trans. CAD*, 2012.

Pareto Optimization: Overview

- Objective functions are weighted sum of delay and power
 - Non-convex problem
 - Gradient descent used
- Delay and power are approximated with second order functions in trust region
- Trust region shrinks during optimization
- Logarithmic barrier is incorporated to confine parameter range

Pareto Optimization: Modeling

 Build simulation-block-level delay and power models by utilizing <u>circuit simulations results</u>.

$$D_{Si}(\mathbf{y}_{i,0} + \Delta \mathbf{y}_{i}) = D_{Si,0} + \mathbf{G}_{Di}^{T} \Delta \mathbf{y}_{i} + \frac{1}{2} \Delta \mathbf{y}_{i}^{T} \mathbf{H}_{Di} \Delta \mathbf{y}_{i}$$
$$P_{Si}(\mathbf{y}_{i,0} + \Delta \mathbf{y}_{i}) = P_{Si,0} + \mathbf{G}_{Pi}^{T} \Delta \mathbf{y}_{i} + \frac{1}{2} \Delta \mathbf{y}_{i}^{T} \mathbf{H}_{Pi} \Delta \mathbf{y}_{i}$$

- Objective delay is the longest delay of all logic paths (constructed by simulation blocks)
 - Using high order norm to estimate max-delay function

 \rightarrow This can make the objective function continuous for gradient calculation

 $D(\boldsymbol{X}) = W_{D} \cdot \max\left(\left(D_{S1}(\boldsymbol{y}_{I}), D_{S2}(\boldsymbol{y}_{2}), \dots, D_{Sn}(\boldsymbol{y}_{n})\right)\right) \approx W_{D} \cdot \left\|\left(D_{S1}(\boldsymbol{y}_{I}), D_{S2}(\boldsymbol{y}_{2}), \dots, D_{Sn}(\boldsymbol{y}_{n})\right)\right\|_{K}$

Objective power is the weighted total power *P*

$$P = \sum_{i=1}^{n} W_i \cdot P_{Si}$$

Power Management: Overview

- Modern circuits allow devices to operate in three modes: normal, power saving and sleep mode.
 - A 2^{nd} lower V_{dd} is applied to devices in power saving mode
 - Device is turned off in sleeping mode
- Pick best 2^{nd} V_{dd} and optimally divide time spent on each mode
 - Need input of the ratio of average throughput to peak throughput
 - Use polynomial models for delay and power of simulation block as a function of V_{dd} Model fit for delay and power
- Minimizing average power consumption: $f_1P_1 + f_2P_2$

Validation of PROCEED

- Model³ is frequently used for device evaluation
 - Ignoring logic depth histogram and using analytical delay and power models is inaccurate
- Proposed methodology is 21X (average) more accurate
 - Efficient to evaluate devices with performance range from MHz to GHz

³D. J. Frank, et. al., *IBM J*, 2006

Outline

PROCEED Methodology

Example Experimental Results

Impact of Activity

- Low activity circuit benefits low leakage devices
 - TFET better than SOI MOSFET for low-activity, low-performance circuits

Impact of Circuit Topology

- CortexM0 is more evenly distributed in LDH
- Power consumption in MIPS is dominated by short logic paths
 - More accommodating to low power devices (TFETs)

Impact of Power Management

- Peak throughput cross-points shift higher as ratio of average to peak throughput decreases
 - This indicates TFET may be a better device for applications with wide dynamic range in performance needs

Impact of Variation

- Variation evaluation indicates that TFET suffers more from effective voltage drop
 - TFET and SOI are assumed to have peak 10% Vdd and 50mV
 Vth worst case variation
 - High Sub-threshold Slope (SS) devices are more sensitive to voltage drop

Conclusion

- Proposed new methodology for evaluating emerging devices accounts for circuit topology, adaptivity, variability, and use context
- Proposed methodology is efficient and accurate for device evaluation over broad operating range.
 - Effective Pareto -based optimization heuristic
 - Accurate circuit simulation and device compact model
- Example comparison of TFET and SOI devices
 - TFET is better for low activity, low logic depth and high dynamic performance design
 - TFET is more sensitive to voltage drop and threshold voltage shifting
- Entire PROCEED source-code (MATLAB, C++) will be made available openly.

Q&A

Thanks!