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NanoCAD Lab 

Need for Device Evaluation 

• Traditional CMOS technologies are reaching physical 

limits 

• Many alternative emerging devices under 

investigation: TFET, CNT, Heterogeneous CMOS, etc. 

 need to be able quickly compare them to guide 

technology development 

• How should we compare emerging devices ? 

− Comprehensive, systematic and automated comparison 

in context of how they are going to be used 

− Account for various design types and circuit-level optimizations 

− Fast and flexible evaluation framework 

− Cover the wide performance range (KHz to GHz)  
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NanoCAD Lab 

Prior Work 

• Three classes of works 

– Devices level1,6: Ion/Ioff, Subthreshold Slope (SS ), CV/I, CV2 

– Canonical circuit level: Simple circuits + Analytical model4 based 

power-delay tradeoff  

– Full design flow: Library generation, Synthesis, Placement and 

Routing  

• Existing evaluation benchmarks neglect how modern 

circuits really use devices  These can dramatically 

change the conclusions. 

− Circuit topology dependence (e.g., logic depth) 

− Design-time power optimization (Multi-Vth and multiple gate sizes) 

− Runtime adaptive power management (DVFS, Gating) 
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1L. Wei, et. al., IEDM, 2010 
4D. J. Frank, et. al., IBM J, 2006 
6M. Luisier, et. al., IEDM, 2011 



NanoCAD Lab 

Outline 

 

 

PROCEED Methodology 

 

Example Experimental Results 
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Proposed Framework: PROCEED 
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Canonical Circuit Construction 
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• Utilize essential design information 

– Logic depth histogram, average number of transistors per gate, 

average fan-out, average interconnect load and chip area 

– Ignore detailed circuit design 

• Little impact on device performance evaluation 

 

 

(b)

Inverter

Single stage

Interconnect

Fan-out

Gate ...
Signal in Signal out

1 stage 1 stage

i stagesSi

Simulation block

0

4

8

12

16

20

0.0 0.2 0.4

 

Frequency

L
o

g
ic

 D
e
p

th

Long 

paths

Short 

paths

(a)

S5 S5
...

S4 S4

S3 S3
...

S2 S2
...

S1 S1
...

...

Bin 1

Bin 2

Bin 3

Bin 4

Bin 5  Logic depth histogram 

 Simulation blocks (Si) 

– Construct logic paths in 

corresponding bins 

 Single stage 

– Gate (Nand, XOR, etc.) 

– Buffer, interconnect, 

fan-out load 

 Tuning parameters 

– Gate sizes, Vdd, Vth 
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Canonical Circuit Construction 
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• Logic depth histogram is 

estimated using slack 

histogram 

 

 

• Interconnect 

– Interconnect is proportional to 

the square-root of chip area1 

– Chip area is assumed to be 

linear to cell area 

– Cell area is modeled as a 

function of transistor width 

from DRE2 
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1 J. A. Davis, et. al.,, IEEE TED, 1998. 
2 R. S. Ghaida and P. Gupta,  IEEE Trans. CAD, 2012. 
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Pareto Optimization: Overview 
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• Objective functions are 

weighted sum of delay and 

power 

– Non-convex problem 

– Gradient descent used 

• Delay and power are 

approximated with second 

order functions in trust 

region 

• Trust region shrinks during 

optimization  

• Logarithmic barrier is 

incorporated to confine 

parameter range 
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Pareto Optimization: Modeling 
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• Build simulation-block-level delay and power models by 

utilizing circuit simulations results. 

 

 

 

• Objective delay is the longest delay of all logic paths 

(constructed by simulation blocks) 

– Using high order norm to estimate max-delay function  

 This can make the objective function continuous for gradient 

calculation  

 

 

• Objective power is the weighted total power 
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Power Management: Overview 
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• Modern circuits allow devices to operate in three modes: 

normal, power saving and sleep mode. 

– A 2nd lower Vdd is applied to devices in power saving mode 

– Device is turned off in sleeping mode 

• Pick best 2nd Vdd and optimally divide time spent on each mode 

– Need input of the ratio of average throughput to peak throughput 

– Use polynomial models for delay and power of simulation block 

as a function of Vdd 

 

 
• Minimizing average power  

     consumption: f1P1 + f2P2 
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Validation of PROCEED 

ASP-DAC 2014 11 

 

 

 

 

 

 

 

 

 

 

• Model3 is frequently used for device evaluation 

– Ignoring logic depth histogram and using analytical delay and power 

models is inaccurate 

• Proposed methodology is 21X (average) more accurate 

– Efficient to evaluate devices with performance range from MHz to GHz  
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Outline 
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Example Experimental Results 
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Impact of Activity 
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• Low activity circuit benefits low leakage devices 

– TFET better than SOI MOSFET for low-activity, low-performance 

circuits 
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Impact of Circuit Topology 
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• CortexM0 is more evenly distributed in LDH 

• Power consumption in MIPS is dominated by short logic paths 

– More accommodating to low power devices ( TFETs) 
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Impact of Power Management 
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• Peak throughput cross-points shift higher as ratio of average to 

peak throughput decreases 

– This indicates TFET may be a better device for applications with 

wide dynamic range in performance needs 
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Impact of Variation 
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• Variation evaluation indicates that TFET suffers more from 

effective voltage drop 

– TFET and SOI are assumed to have peak 10% Vdd and 50mV 

Vth worst case variation  

– High Sub-threshold Slope (SS )devices are more sensitive to 

voltage drop 
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Conclusion 

• Proposed new methodology for evaluating emerging devices 

accounts for circuit topology,  adaptivity, variability, and use 

context 

• Proposed methodology is efficient and accurate  for device 

evaluation over broad operating range. 

– Effective Pareto -based optimization heuristic 

– Accurate circuit simulation and device compact model 

• Example comparison of TFET and SOI devices 

– TFET is better for low activity, low logic depth and high 

dynamic performance design 

– TFET is more sensitive to voltage drop and threshold 

voltage shifting 

• Entire PROCEED source-code (MATLAB, C++) will be made 

available openly.  
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Q&A 
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