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Outline 

• Neural network and memristor 

• Gaps between previous memristor models and real devices   
– Continuous and arbitrary states vs. binary or multi-level states 

– Deterministic vs. stochastic  

• Stochastic modeling of TiO2 memristor 
– ON and OFF static states 

– Dynamic switching process  

• Neuromorphic  applications  
– Weight storage unit 

– Stochastic neuron   

• Conclusion and future work 
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Neural Network: Abstract of Bio Systems 

Neural network for pattern recognition: 

• Training: Learn from different prototype patterns.  

• Recognize: Output the most-likely prototype pattern for a given input. 

Weight matrix W 
Y = f (W  X) 

X Y 
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Memristor – Rebirth of Analog Approach 

Memristor 

Natural weight carriers: 
• Non-volatility, high density 

• Analog resistance states 

• Two terminal programming 

 

Memristor Crossbar 

• Natural weight summation 
• MIMO ~ avoid reading sneak path 
• Cost ~ O(N), not O(N2) 

M = RL α + RH (1- α)  

I = VM1/M1 + VM2/M2 +…+ VMn/Mn 
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Observation 1  

It’s difficult to precisely tune the state of every memristor in a 
large crossbar array.  

     

Sneak paths causes unexpected 
state changing on neighbor 
devices. 

Wire resistance results in voltage 
degradation, especially on the device 
far from the driver. 
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Observation 2 

• Metal oxide based memristors behave stochastically. 
– The stochastic feature is missing in existing physical models. 

– Modeling the stochastic feature which is heavily correlated with 
variations is very difficult.  

(b)

Jan 14, 2014 Hai Li,         Evolutional Intelligence Lab  

– Previous statistical analyses [1] 
consider only the binary switching, 
while ignoring memristor’s 
continuous analog states.  

 

A general model: 

 𝑉 = 𝐼 ∙ 𝑀 𝑤, 𝑉  
𝑑𝑤

𝑑𝑡
= 𝑓(𝑤, 𝑉) 

 

[1]  G. Medeiros-Ribeiro, et al., Nanotechnology, 2011. 
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Stochastic Modeling of TiO2 Memristor 

• A stochastic behavior model of TiO2 memristor was firstly 
proposed in this work.  

 

• The model bypasses material-related parameters by directly 
linking the device analog behavior to stochastic functions. 
– Simpler configuration: no need to decouple the impact of variations 

– Simpler device model: feasible to used in large-scale simulations. 

– Better fitting the stochastic nature: more statistically accurate. 
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Model Construction – Static States  

• The Lognormal fitting is used for ON and OFF states of TiO2 
memristor [2]. 

• The internal variable w follows a normal distribution. 

• The device resistance has an exponential relation with w. 
 

[2]  W. Yi, et al., Appl. Phys. A, 2011. 
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Model Construction – Dynamic Switching  

The stochastic switching process is illustrated as below.   

Quantum region  

t 

R 

108 

104 RON 

ROFF 

TiO2 
TiO2-X 

ON over-tune  

OFF over-tune  
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Analog Switching Process  

• The time dependency of switching probability can be 
approximated by the cumulative probability function (CDF) 
of lognormal distribution [1]. 

 

 

 

[1]  G. Medeiros-Ribeiro, et al., Nanotechnology, 2011. 

 

• We further expend it to fit analog process:  

𝑃 Success switch =  𝐹 𝑡switch; 𝜇𝑡 , 𝜎𝑡 = 
1

2
erfc −

ln 𝑡switch 𝜇𝑡 2

2𝜎𝑡
2

  

𝑑𝑃 Success switch

𝑑𝑡switch
= 𝑓𝑡switch

𝑡switch; 𝜇𝑡, 𝜎𝑡  

𝑑𝑅

𝑑𝑡
= 𝑅off − 𝑅on ∙ 𝑓𝑡switch

𝑡switch; 𝜇𝑡, 𝜎𝑡  

Jan 14, 2014 Hai Li,         Evolutional Intelligence Lab  



Evolutional Intelligence (EI) Lab  

11 

Over-Tune  

• The device mechanism is different in over-tune situation.   

• Considering the slow and relatively small resistance changing 
in over-tune situation, a linear approximation is adopted in 
which e is a fitting parameter:    

 

 𝜇shift = 𝑒 ∙ 𝑞 = 𝑒 ∙
𝑉

𝑀
∙ 𝑡 

Jan 14, 2014 Hai Li,         Evolutional Intelligence Lab  



Evolutional Intelligence (EI) Lab  

12 

Model Verification   
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Neuromorphic Applications 

• Our primary interest is to effectively utilize memristive 
switches and provide feasible designs for NN hardware.  
 

– Continuous weight storage unit  

• Alleviating the impact of stochastic  

• Using binary states of memristor to represent continuous value  
 

– Stochastic neuron  

• Making use of stochastic feature 

• Replacing pseudo-random number generators in traditional NN hardware    
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Continuous Weight Storage Unit 

• Distribution of parallel connected memristors 

• An example consisting of 9 parallel connected memristors 
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Continuous Weight Storage Unit 

• A macro cell 
– Containing multiple memristive switches in crossbar structure.  

– A larger memristive switch crossbar can be partitioned into many 
macro cells for continuous weight storage. 

i1

(a)

V

i iout

(b)

V1

V2

i2

G1,1 G1,2

G2,1 G2,2
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Feedback Switching Scheme  

• Step 1: Decide the number of ON state memristors in a macro cell.   

• Step 2: Switch memristors and detect conductance of macro cell.  

• Step 3: Repeat Step 2 until conductance falls in acceptable range.  
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Stochastic Neuron  

• Unlike weight storage, stochastic neuron employs the 
stochastic feature of memristor: 
– The probability of output states depends on the input voltage.  
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Vdd

Vreset
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Vdd
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Vread

Vop

Vreset
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Vread
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Stochastic neuron  

Binary neuron Continuous neuron 
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Conclusion 

• A simple and statistically accurate stochastic memristor 
model is firstly proposed. 

• Two fundamental NN components are designed and analyzed 
by leveraging the proposed model. 

• The weight storage unit:  
– Uses multiple devices to obtain the continuous analog state while 

bypassing complex tuning scheme. 

– On average, an analog value can be obtained within 25 attempts.  

• Stochastic neuron: 
– Simple design structure by leverage the stochastic feature of 

memristors. 

– The neuron’s stochastic function is determined by the device 
characteristics. 
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Thank you for attending my presentation! 
 

Questions are welcome! 
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