The Stochastic Modeling of TiO_{2} Memristor and Its Usage in Neuromorphic System Design

Miao Hu, Yu Wang, Qinru Qiu, Yiran Chen and Hai Li

Swanson School of Engineering
Department of Electrical and Computer Engineering University of Pittsburgh

Outline

- Neural network and memristor
- Gaps between previous memristor models and real devices
- Continuous and arbitrary states vs. binary or multi-level states
- Deterministic vs. stochastic
- Stochastic modeling of TiO_{2} memristor
- ON and OFF static states
- Dynamic switching process
- Neuromorphic applications
- Weight storage unit
- Stochastic neuron
- Conclusion and future work

Neural Network: Abstract of Bio Systems

Neural network for pattern recognition:

- Training: Learn from different prototype patterns.
- Recognize: Output the most-likely prototype pattern for a given input.

Memristor - Rebirth of Analog Approach

Natural weight carriers:

- Non-volatility, high density
- Analog resistance states
- Two terminal programming

Memristor Crossbar

$$
\mathbf{I}=\mathbf{V}_{\mathbf{M} 1} / \mathbf{M} 1+\mathbf{V}_{\mathbf{M} 2} / \mathbf{M}_{2}+\ldots+\mathbf{V}_{\mathbf{M n}} / \mathbf{M}_{\mathrm{n}}
$$

- Natural weight summation
- MIMO ~ avoid reading sneak path
- Cost ~ O(N), not O(N²)

Observation 1

It's difficult to precisely tune the state of every memristor in a large crossbar array.

Sneak paths causes unexpected state changing on neighbor devices.

Wire resistance results in voltage degradation, especially on the device far from the driver.

Observation 2

- Metal oxide based memristors behave stochastically.
- The stochastic feature is missing in existing physical models.
- Modeling the stochastic feature which is heavily correlated with variations is very difficult.
- Previous statistical analyses ${ }^{[1]}$ consider only the binary switching, while ignoring memristor's continuous analog states.

A general model:

$$
\begin{aligned}
V & =I \cdot M(w, V) \\
\frac{d w}{d t} & =f(w, V)
\end{aligned}
$$

[1] G. Medeiros-Ribeiro, et al., Nanotechnology, 2011.

Stochastic Modeling of TiO_{2} Memristor

- A stochastic behavior model of TiO_{2} memristor was firstly proposed in this work.
- The model bypasses material-related parameters by directly linking the device analog behavior to stochastic functions.
- Simpler configuration: no need to decouple the impact of variations
- Simpler device model: feasible to used in large-scale simulations.
- Better fitting the stochastic nature: more statistically accurate.

Model Construction - Static States

- The Lognormal fitting is used for ON and OFF states of TiO_{2} memristor ${ }^{[2]}$.
- The internal variable w follows a normal distribution.
- The device resistance has an exponential relation with w.

$$
\text { [2] W. Yi, et al., Appl. Phys. A, } 2011 .
$$

Model Construction - Dynamic Switching

The stochastic switching process is illustrated as below.

Analog Switching Process

- The time dependency of switching probability can be approximated by the cumulative probability function (CDF) of lognormal distribution ${ }^{[1]}$.

$$
P(\text { Success switch })=F\left(t_{\text {switch }} ; \mu_{t}, \sigma_{t}\right)=\frac{1}{2} \operatorname{erfc}\left[-\frac{\left(\ln t_{\text {switch }} / \mu_{t}\right)^{2}}{\sqrt{2} \sigma_{t}{ }^{2}}\right]
$$

[1] G. Medeiros-Ribeiro, et al., Nanotechnology, 2011.

- We further expend it to fit analog process:

$$
\begin{aligned}
& \frac{d P(\text { Success switch })}{d t_{\text {switch }}}=f_{t_{\text {switch }}}\left(t_{\text {switch }} ; \mu_{t}, \sigma_{t}\right) \\
& \frac{d R}{d t}=\left(R_{\text {off }}-R_{\mathrm{on}}\right) \cdot f_{t_{\text {switch }}}\left(t_{\text {switch }} ; \mu_{t}, \sigma_{t}\right)
\end{aligned}
$$

Over-Tune

- The device mechanism is different in over-tune situation.
- Considering the slow and relatively small resistance changing in over-tune situation, a linear approximation is adopted in which e is a fitting parameter:

$$
\mu_{\mathrm{shift}}=e \cdot q=e \cdot\left(\frac{V}{M}\right) \cdot t
$$

Model Verification

Example of 100 cycles

ON switching fitting

Static states fitting

OFF switching fitting

Neuromorphic Applications

- Our primary interest is to effectively utilize memristive switches and provide feasible designs for NN hardware.
- Continuous weight storage unit
- Alleviating the impact of stochastic
- Using binary states of memristor to represent continuous value
- Stochastic neuron
- Making use of stochastic feature
- Replacing pseudo-random number generators in traditional NN hardware

Continuous Weight Storage Unit

- Distribution of parallel connected memristors
- An example consisting of 9 parallel connected memristors

Number of ON state memristive switches

Continuous Weight Storage Unit

- A macro cell
- Containing multiple memristive switches in crossbar structure.
- A larger memristive switch crossbar can be partitioned into many macro cells for continuous weight storage.

Feedback Switching Scheme

- Step 1: Decide the number of ON state memristors in a macro cell.
- Step 2: Switch memristors and detect conductance of macro cell.
- Step 3: Repeat Step 2 until conductance falls in acceptable range.

Average case

Worst case

Stochastic Neuron

- Unlike weight storage, stochastic neuron employs the stochastic feature of memristor:
- The probability of output states depends on the input voltage.

Stochastic neuron

Binary neuron

Continuous neuron

Conclusion

- A simple and statistically accurate stochastic memristor model is firstly proposed.
- Two fundamental NN components are designed and analyzed by leveraging the proposed model.
- The weight storage unit:
- Uses multiple devices to obtain the continuous analog state while bypassing complex tuning scheme.
- On average, an analog value can be obtained within 25 attempts.
- Stochastic neuron:
- Simple design structure by leverage the stochastic feature of memristors.
- The neuron's stochastic function is determined by the device characteristics.

Thank you for attending my presentation!

Questions are welcome!

