LightSim : A Leakage Aware Ultrafast Temperature Simulator

Smruti R. Sarangi

Gayathri Ananthanarayanan

M. Balakrishnan

Department of Computer Science & Engineering IIT DELHI

Outline

- Motivation
- Problem Description
- Related Work
- Proposed Model
- Results
- Summary

Temperature – First Order Design Constraint

Heat Flux Trends over the Years

Source: [1]

Temperature – First Order Design Constraint

Performance	Increase in Wire delay	
Reliability	Decrease in MTTF Timing Errors	
Thermal Rundown	Temperature – Leakage Feedback Loop	

Temperature Estimation – Need and Importance

Need of the

hour

Source: [3]

- Floorplanning and Placement
- Leakage convergence Slow Process

Heat Conduction in Microprocessors

Top view of the Die

Temperature Distribution in a Chip

Relation between Δ **T and radial distance (r)**

Temperature Distribution in a Chip

- Fourier's heat equation $-\frac{\partial U}{\partial t} = \alpha_1 \nabla^2 U + \alpha_2 Q$
- U = Temperature Field, Q = Power Flux
- Green's function (G) Impulse response of an inhomogeneous differential equation defined on a domain

 $U(x'y'z') = \int G(x, y, z | x', y', z')Q(x'y'z')dx'dy'dz'$ $U = G \otimes Q$

Heat Spread function - Green's function of the system

Problem description

Problem description

To develop a faster and accurate temperature estimation tool

Derive a transient and steady state Green's function of the chip

(Considering leakage-temperature feedback loop)

Related Work

Existing thermal simulators essentially use one of the following methods

- Finite element method
- Finite difference method –
- Boundary element method
- Spectral based method

Krylov Subspace Alternate Direction Implicit Adaptive Meshing Multigrid methods Related Work

Hotspot (Skadron et al. ISCA'03)

Thermal electrical duality and FDM

CONTILTS (Han et al. J.LPE'07)

Piecewise Constant Approximation of power trace

Power Blurring (Park et al. SemiTherm'10)

Thermal mask convoluted with power density distribution

Proposed Model

Obtain the Impulse response of the system without leakage

> Approximate the leakage with a linear model and include the leakage feedback component

> > Compute the Green's function using Hankel and Fourier Transform Equivalence Relation

Benefits

- Traditionally Impulse response is converted to Fourier transform and inverse Fourier transform is used to obtain the Green's function
 - Fourier Transform (2D space) Complexity : O(N²)

• Our Model uses Hankel Transform (1D space) – Complexity: O(N)

Die is very large (theoretically infinite)

f_{silic} is radially symmetric

Heat sources are on the die surface and we restrict our computations to the top surface of the die

Leakage power increases instantaneously

Crux of our Technique

Steady state Leakage Problem

- $Q = P_{dyn} + P_{leak}$ = Total Power dissipation
- $\Delta T = U = U_p U_0 = \text{Change in Temperature Field}$ $U = G \otimes Q = (\mathbf{f}_{sp}) \otimes (\mathbf{P}_{dyn} + \beta U)$ Linear Leakage $\beta \mathbf{f}_{sp} \otimes U = \text{Leakage Feedback component}$
- $\mathbf{U} = \mathbf{f}_{\text{silic}} + \kappa + \beta \mathbf{f}_{\text{silic}} \otimes \mathbf{U} + \kappa_1$

Fourier Hankel Equivalence 2D Fourier Transform F(s,t) $\frac{1}{2\pi} \iint e^{-j(xs+yt)} \, dx \, dy$ Zero Order Hankel Transform H(k) symmetri Zero Order Hankel Transform is equivalent to 2D Fourier Transform of radially symmetric functions in polar co-ordinates

Hankel Transformation

•
$$H(U) = \frac{H(f_{silic}) + (\kappa + \kappa_1)H(1)}{1 - 2\pi\beta H(fsilic)}$$

Transient Leakage Problem

Here we start with

- $\mathbf{U} = \mathbf{f}_{\rm sp} + \beta \mathbf{f}_{\rm sp} \otimes \mathbf{U} \mathbf{C} \mathbf{f}_{\rm sp} \otimes \frac{\partial U}{\partial t}$
- We follow similar steps and use Leibnitz rule
 Boundary conditions :
 - At t = 0, H(U) = 0
 - At $t = \infty$, $H(U) = H(f_{leaksp})$

Transient Leakage Problem

Solving for t and applying boundary conditions

 $\mathcal{H}(\mathcal{U}) = \mathcal{H}(f_{leaksp}) \times \left(1 - e^{-\frac{t}{f_{\alpha}(s)(\kappa\delta(s)/s + \mathcal{H}(f_{silic}))}}\right)$

■ Inverse Hankel transformation \implies f_{trans}(r,t)

$$\begin{aligned} & \underset{heating up}{\text{fheating up}} \\ & f_{trans}(r,t) = fleaksp_{(r)} - f_{inv} \overset{\epsilon}{}(r,t) - f_{inv} \overset{\infty}{}(r,t) \\ & 0 & \epsilon \end{aligned}$$

Experimental Setup

Experimental Configuration

PARAMETER	VALUE	
Die Size	400 mm ²	
Silicon Conductivity	130 W/m-K	
Spreader Conductivity	370 W/m-K	
Heat sink Conductivity	237 W/m-K	
Convection Resistance	0.1 K/W	
Spreader Thickness	3.5 mm	
Heatsink Thickness	24.9 mm	

ARCH	Quad Core 3.1 Ghz Intel i7 processor		
OS	Ubuntu Linux 12.10		
RAM	4GB		

Hotspot tool Configuration

Experimental Environment

Results - Accuracy

Results – Accuracy

Results - Speed

SIMULATOR	STEADY STATE LEAKAGE	TRANSIENT LEAKAGE	< 3500 X
HOTSPOT 5.02	30.3 ms	45s 。 ° (
CONTILTS	25.2 ms	206.4 ms	
Liu et. al.	39.3 ms	264.8 ms	4.5X
PowerBlur	20.1 ms	58.2 ms 🔹 °	
LightSim	8.7 ms	12.8 ms	

Results – Sample Simulation

Summary

- An efficient Hankel transform based thermal simulator has been developed
- Has a complexity of O(nlog(n)) time
- Experimental results show that our model is fast and accurate.

Future Work:

- To develop more accurate models for edges and corners
- Comparison with ANSYS/COMSOL simulation

Figure Sources

- 1. <u>http://www.nanowerk.com</u> and Intel
- 2. <u>http://www.ausmotive.com</u>
- 3. <u>www.facegfx.com</u>

THANK YOU !!