

Fast Vectorless Power Grid Verification using Maximum Voltage Drop Location Estimation

ASP-DAC 2013, Singapore January 23th

Outline

- Introduction to Vectorless Verification
- Proposed Approach
 - Worst case location estimation
 - **Group-wise verification**
- Experimental Results & Summary

Power Grid Verification

(C) 2010 Apache Design, Inc. 3

Simulation vs. Vectorless

- Simulation approach
 - Input current patterns are required
 - Solving liner equations to obtain voltage distribution
- Vectorless approach
 - Lack of knowledge of circuit details in early design stage
 - Current constraints are required according to circuit behavior with uncertainty working mode
 - Problem: Verify the grid voltages under all possible current waveforms that satisfy the current constraints
 - Provide a specification or budget based framework for the power grid prototyping

 $G \mathbf{v} = \mathbf{i}$

 $\mathbf{v} = G^{-1} \mathbf{i}$

Problem Definition

Current Constraints

- □ Local constraints: upper bound on individual current sources $0 \le i \le I_L$
- Global constraints: bounds on sums of groups of currents

 $Ui \leq I_G$

- Obtain the worst case of the grid voltage
 - To estimate the worst-case voltage fluctuations by solving optimization problems

$$v = G^{-1}i$$

Maximize voltage drops subject to current constraints

maximize v s.t.

$$Gv = i$$
 , $Ui \leq I_G$ and $0 \leq i \leq I_L$

Vectorless Power Grid Verification

The problem can be divided into two major tasks

$$\Box$$
 Let $c_i \triangleq G^{-1}e_i$

where e_i is the $n \times 1$ vector of all zeros except the *i*-th component being 1, it is to obtain the *i*-th column of G^{-1} by solving $Gx = e_i$

The voltage of the *i*-th node can be obtained by

 $v_i = c_i^T i$ Task 1: More than Now computation cost! Task 2: maximize $v_i = c_i^T i$ s.t. $Ui \le I_G$ and $0 \le i \le I_L$

- Total cost to verify a power grid with N nodes
 - **Solving linear equations with** *N* **unknowns for** *N* **times**
 - **Solving LP problems for** *N* **times**

Motivation

Prototype Vectorless Power Grid Verification

Element-wise verification

1. For k = 1 to n2. Maximize $v_k = (G^{-1}e_k)^T \mathbf{i}$ s.t. $\mathbf{i} \in \mathcal{L}$ 3. Let $v_{max_k} = max v_k$ 4. End For 5. Find $v_{max} = max \{v_{max_1}, v_{max_2}, \cdots, v_{max_n}\}$

Maximum voltage drop location estimation

Group-wise verification

1. Maximize $f(\mathbf{i}) = f(v_{P_{j1}}, v_{P_{j2}}, \dots, v_{P_{jk}})$ s.t. $\mathbf{i} \in \tilde{\mathcal{L}}$ 2. Let $\mathbf{i}_j^* = argmax_{\mathbf{i}\in\tilde{\mathcal{L}}} f(\mathbf{i})$ 3. Find $v_{P_{j^*}}(\mathbf{i}_j^*) = max \left\{ v_{P_{j1}}(\mathbf{i}_j^*), v_{P_{j2}}(\mathbf{i}_j^*), \dots, v_{P_{jk}}(\mathbf{i}_j^*) \right\}$

Framework

- Node grouping based on circuit partitioning
 - **Divide the set of power grid nodes into** *k* **subsets**
 - Node grouping from each subset
- Verification for each group nodes
 - Maximization for the objective of each group
 - **D** Obtain the current solution $\mathbf{i}_{j}^{*} = argmax_{\mathbf{i}\in\tilde{\mathcal{L}}} f(\mathbf{i})$
 - Find the worst case node of this group by substituting i^{*}_j to each grid node
 - Perform accurate verification on the above worst case node

Modified Feasible Region

Local support regions

Global Current Constraints

Local Support Regions

How to perform group-wise verification?

Objective function

Group wise $g(\mathbf{i}) = max \{ v_{P_{i1}}, v_{P_{i2}}, \dots, v_{P_{ik}} \}$ $\square h(\mathbf{i}) = ln(e^{v_{P_{j1}}} + e^{v_{P_{j2}}} + \dots + e^{v_{P_{jk}}})$ $\square r(\mathbf{i}) = \left(v_{P_{i1}}^p + v_{P_{i2}}^p + \dots + v_{P_{ik}}^p\right)^{\frac{1}{p}} (p > 1)$ $\Box f(\mathbf{i}) = v_{P_{j_1}} + v_{P_{j_2}} + \dots + v_{P_{j_k}}$ $\|x\|_{2}$ $\|x\|_{\infty}$ $\|x\|_{1}$ 0 0 Approximation to q(i)**Concave optimization**

Estimating Function

$$f(\mathbf{i}) = v_{P_{j1}} + v_{P_{j2}} + \dots + v_{P_{jk}}$$

- Linear programming
- The estimation accuracy is based on the locality effect of the power grid

$$\tilde{f}(\mathbf{i}) = w_1 v_{P_{j_1}} + w_2 v_{P_{j_2}} + \dots + w_k v_{P_{j_k}} (w_l > 0)$$

D Handle the influence of current constraints in $\tilde{\mathcal{L}}$

Group-wise Verification

Element-wise framework

Task 1: compute c_i by solving $Gx = e_i$

□ Task 2: maximize $v_i = c_i^T i$ s.t. $Ui \le I_G$ and $0 \le i \le I_L$

- Group-wise Verification
 - **For nodes** P_{j1} , P_{j2} , ..., P_{jk} in group **j**
 - Compute $f(\mathbf{i}) = v_{P_{j1}} + v_{P_{j2}} + \dots + v_{P_{jk}}$ is to perform

> Task 1: compute c_j by solving $Gx = e_{p_{j1}} + e_{p_{j2}} + ... + e_{p_{jk}}$

> Task 2: maximize $v_j = c_j^T i$ s.t. $\tilde{\mathcal{L}}$

Total cost to verify a power grid with *M* groups

- > Solving linear equations with N unknowns for M times
- > Solving LP problems for *M* times

Node Grouping Based on Circuit Partitioning

Geometric partitioning

Need detailed geometric information of the power grid

Algebraic partitioning

Estimating the influence between any two nodes by computing the shortest path length connecting them in the resistance network

$$\begin{bmatrix} * & -1 & 0 & -3 & 0 & 0 & 0 & 0 & 0 \\ -1 & * & -4 & 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & -4 & * & 0 & 0 & -1 & 0 & 0 & 0 \\ -3 & 0 & 0 & * & -6 & 0 & -1 & 0 & 0 \\ 0 & -2 & 0 & -6 & * & -2 & 0 & -3 & 0 \\ 0 & 0 & -1 & 0 & -2 & * & 0 & 0 & -5 \\ 0 & 0 & 0 & -1 & 0 & 0 & * & -1 & 0 \\ 0 & 0 & 0 & 0 & -3 & 0 & -1 & * & -4 \\ 0 & 0 & 0 & 0 & 0 & -5 & 0 & -4 & * \end{bmatrix} \xrightarrow{1} \begin{bmatrix} 1 & 4 \\ 4 \\ 4 \end{bmatrix}$$

Experimental Results

HW/SW Platforms

- C++ implementation with single thread
- **Cholmod** for solving all involved linear equations
- □ *Ip_solve* for solving linear programming problems
- 64-bit Linux server with Intel Xeon E5345 CPU @ 2.33GHz and 8GB RAM

Benchmarks

Power grid benchmarks for vectorless verification, Prof. Jia Wang, IIT

Experimental Results

Benchmark information

Power Grid	Туре	#Nodes	#VDD Pads	#Global Constraints
PG1	2-D irregular	4082	9	6
PG2	3-D regular	5875	9	10
PG3	2-D irregular	9964	16	10
PG4	3-D irregular	11706	18	10
PG5	3-D regular	22939	25	10
PG6	3-D irregular	35568	36	12

Performance

Test Case	#Partitions	Runtime			
		Original	Modified	Speedup	Error(mV)
PG1	16	122.46s	21.16s	5.79	0.17
PG2	16	293.75s	48.63s	6.04	0
PG3	25	996.41s	105.43s	9.45	7.53
PG4	32	25.36m	122.76s	12.40	0
PG5	36	1.72h	424.35s	14.60	0
PG6	36	5.14h	20.66m	14.92	2.81

Experimental Results

Runtime

16

Summary

- Simulation is not enough for PG verification, more attention should be taken into vectorless approach.
- This paper proposed a modified vectorless power grid verification framework using a maximum voltage drop location estimation technique.
- The implementations of the group-wise verification are essential for significantly reducing the verification complexity.
 - The experimental results show the verification accuracy is acceptable and the speedups are significant.

THANKS FOR YOUR ATTENTION! Q & A

