An Oscillator-Based True Random Number Generator with Process and Temperature Tolerance

Takehiko Amaki, <u>Masanori Hashimoto</u> and Takao Onoye

Osaka University hasimoto@ist.osaka-u.ac.jp

Security and random number

- Cryptography and authentication system requires unpredictable random numbers.
 ex.) Private/Public key generation, challenge-and-response authentication, etc.
- Random number generator
 - Pseudo random number generator
 - Mathematical calculation
 - Output is periodic and then predictable.
 - True random number generator (TRNG)
 - Physical random source
 - Output is unpredictable.

Oscillator-based TRNG

- Acquires randomness from period jitters of oscs.
- Pro: Easy to implement
- Con: Difficult to generate highly random numbers
 - sensitive to duty cycle of fast osc.

Duty cycle of fast osc. decides 0/1 probability.

Contribution

- Duty cycle variation due to temperature
 - Biases 0/1 probability beyond 50±0.125% and makes TRNG fail in NIST randomness test.
 - Cannot be eliminated by static tuning at shipping test
- Developed a TRNG w/ dynamic 0/1 bias correction for process and temperature
 - tolerance
 - Fast duty cycle monitor
 - Duty cycle adjuster

65nm CMOS

Dynamic duty cycle correction

- Proposed duty cycle correction sustained duty cycle and entropy under temperature variation between 0°C and 75°C.
 - Without it, duty cycle and entropy degraded.

1S-2

Comparison w/ existing works

 Among TRNGs that pass NIST tests, area of proposed TRNG is minimum.

	Bucci 2013 [11]	Bucci 2008 [3]	Pareschi 2010 [12]	Srinivasan 2010 [2]	This work
Туре	Direct amp.	Osc.	Chaos	Metastable	Osc.
Tech.	180nm	90nm	180nm	45nm	65nm
Area (45nm)	1,563 μ m ²	$3,250 \mu m^2$	$7,875 \mu m^2$	$4,004 \mu m^2$	$3,335\mu m^2$
Randomness test	FIPS140-1 Knuth	AIS31 Entropy	NIST	NIST Entropy Auto corr. Run length	NIST DIEHARD