A Low-Power VCO based ADC with asynchronous sigma-delta modulator in 65nm CMOS

Jili Zhang, Chenluan Wang, Shengxi Diao, Fujiang Lin

University of Science and Technology of China, Hefei, China

VCO-based Quantizer

- ✓ Only need VCO and digital gate circuits
- Time resolution and speed improved with technology scaling
- ✓ First order noise shaping property

1S-20

X The non-linearity of the VCO voltage to frequency transfer character limits the performance.

Proposed VCO based ADC with ASDM

ASDM transfer input signal voltage information into pulse width information in time domain
VCO only works at two voltage levels: V_{high} and V_{low}

Sense-amp flip-flops work as phase quantizer

Implementation of ASDM

1**S-2**0

Measurement result

Output Spectrum of proposed ADC with 600 mV_{pp} -diff 1 MHz tone

SNDR&FOM vs. signal Bandwidth

Fsampling	BW	SNR	SNDR	ENOB	Power	Area	FoM
MHz	MHz	dB	dB	bits	mW	mm^2	fJ/conv
1500	8	54.8	54.3	8.7	2.8	0.08	334

1**S-**20

Reference

- [1] M. Park, "A 78 dB SNDR 87 mW 20 MHz Bandwidth Continuous-Time Delta-Sigma ADC With VCO-Based Integrator and Quantizer Implemented in 0.13 um CMOS," *IEEE Journal of Solid-State Circuits*, VOL. 44, pp. 3344-3358, 2009.
- [2] G. Taylor, "A Mostly-Digital Variable-Rate Continuous-Time Delta-Sigma Modulator ADC," *IEEE Journal of Solid-State Circuits*, VOL. 45, pp. 2634-2646, 2010.
- [3] S. Rao, "A 71dB SFDR open loop VCO-based ADC using 2-level PWM modulation," *Symposium of VLSI Circuits Digest*, 2011.
- [4] S. Ouzounov, "Analysis and Design of High-Performance Asynchronous Sigma-Delta Modulators With a Binary Quantizer," *IEEE Journal of Solid-State Circuits*, VOL. 41, pp. 588-596, 2006.
- [5] S. Ouzounov, "A CMOS V-I converter with 75-dB SFDR and 360µW power consumption," *IEEE Journal of Solid-State Circuits*, VOL. 40, pp.1527-1532, 2005.