Ceatech

TWO-PHASE PROTOCOL CONVERTERS FOR 3D ASYNCHRONOUS 1-OF-N DATA LINKS

Julian Pontes, Pascal Vivet***, Yvain Thonnart CEA-LETI, Minatec Campus, Grenoble, France

ASP-DAC'2015, Tokyo, Japan,

20 January 2015

www.cea.fr

leti & li/t

3D Asynchronous NoC

Modular 3D NoC architecture for 3D stacking technology (TSV)

- Stacking of multiple dies for multi-core design, as a 3D GALS template
- 3D is still un-mature technology, not well supported by CAD tools (TA, CTS, etc.)
- Asynchronous interface to avoid 3D clocks distribution (Clocks local to each dies)
- 3D ANoC proposal
 - 3D mesh based, using hierarchical routers (2D direction and 3D direction) [W. Lafi, DATE'11]
 - Full asynchronous QDI design
 - [Y. Thonnart, P. Vivet, DATE'2010] [F.Darve, Sheibanyrad, ISVLSI'2011]

leti & li/t

3D Interface Design Challenge

Data communication in 3D

- Synchronous communication
 - Clock distribution
 - Power hungry

Ceatech

- Complex timing closure = Chip to Chip modeling
- Asynchronous Communication
 - No timing assumption = Easier Timing Closure
 - Performance problems due to long 3D link propagation delay
 - 3D interconnect (μ-bumps, TSV, RDL, etc)
 - μ-buffer cell (buffer + ESD + level shifters, etc.)
 - Design-for-Test logic (Boundary Scan, etc)

μ-pillar Backside bump RDL

leti & list

- Introduction
- 2-phase Data Link Converter Principle for 3D
- 2-phase Data Link Converter Design
- Experimental Results
- Conclusions & Perspectives

4

Introduction

- 2-phase Data Link Converter Principle for 3D
- 2-phase Data Link Converter Design
- Experimental Results
- Conclusions & Perspectives

Ceatech 3D 2-phase data link architecture (1)

Main Proposal

- Use <u>existing 4-phase protocol</u> for on-chip NoC communication : 2D NoC layers
- Use <u>new 2-phase 1T-of-N protocol</u> for off-chip NoC communication : 3D NoC link
- Implement efficient protocol converters to reduce penalty of off-hip delays

Implementation

- No Clocking at the 3D interface
- Full robustness of 2D links and 3D links : no timing hypothesis
- Implement the protocol converters as HardMacros (including light timing hypothesis)

Ceatech **3D 2-phase data link architecture (2)**

Reduce switching power of 3D • links (half transitions)

Performance estimation : 40 Gates 35 3D Link Delay : ٠ Link delay = 3D line + μ -buffer + μ -bumps + -5 30 25 Number 20 μ -buffer + test muxes Cost of 4⇔ 2conversino Link delay \sim 6 - 8 gate delay -3D Link Cycle Time : ۲ Cycle Time -4-phase = Stage cycle time + 4 * Link Delay 2-phase = Stage cycle time + 2 * Link Delay

leti & list

© CEA. All rights reserved DACLE Division | January 2015

17

- Introduction
- 2-phase Data Link Converter Principle for 3D
- 2-phase Data Link Converter Design
- Experimental Results
- Conclusions & Perspectives

Asynchronous Protocols and Data Encoding

Asynchronous Design choices :

1. Timing Model

Ceatech

- 1. Delay Insensitive (Most Robust)
- 2. Quasi-Delay Insensitive (QDI) (Fully Robust)
- 3. Speed Independent (similar to QDI)
- 4. Bundled Data (similar to synchronous hyp.)
- 2. Handshake Protocol
 - 1. Four phase
 - 1. Easy to implement (for QDI type)
 - 2. Can be used for Computation
 - 2. Two phase
 - 1. Faster and energy efficient
 - 2. Can be used for communication

3. Data Encoding

- 1. Systematic Encoding
 - 1. Additional codeword added to data to reach unordered requirements
- 2. Non systematic Encoding
 - 1. Delay Insensitive by construction

Asynchronous logic is without any clocks, but so many different ways to implement it !

Existing Protocol Converters **Protocol Converter**

4-phase data communication (1)

Return-to-Zero Protocol

Ceatech

- Spacer used to separate two data
- Handshake composed by four transactions
 - Two transactions to transfer data
 - Two transactions to transfer spacer
 - Cycle Time = at least equal to 4 times the link delay

→ 4-phase protocol : this is a level encoded logic, simple logic used for computation

4-phase data communication (2)

For 4-phase protocol, usage of general codes : m-of-n

- It is a Delay Insensitive (DI) Code Subclass
- Often, it is restricted to 1-of-N codes
 - Example:

Ceatech

- 1-of-2 (Dual Rail) [Standard implementation]
- → Use of 2 signals, to encode 1 bit : one rail to encode 0, one rail to encode 1.

Value	A1	A0
Spacer	0	0
ʻ0'	0	1
'1'	1	0

- 1-of-4 (Four Rail) [Standard implementation, for communication]
- → Use of 4 signals, to encode 2 bits, 1 rail per value in [0-3]
- Better power consumption, compared to dual rail : half the transition (1 transition of 1-of-4 instead of 2 transitions of 1-of2), for approximately the same logic complexity.

Value	A3	A2	A1	A0
Spacer	0	0	0	0
'0'	0	0	0	1
'1'	0	0	1	0
'2'	0	1	0	0
'3'	1	0	0	0

→ Use 1-of-4 / 4-phase for on-chip NoC communication existing ANoC design [Y. Thonnart, P. Vivet, DATE'2010]

leti & li/t

2-phase data communication (1)

- Non Return-to Zero Protocol
- No Spacer

Ceatech

- Handshake composed by two transactions
 - One transaction to transfer data
 - One transaction to transfer ack
 - Cycle Time = at least equal to 2 times the link delay

→ 2 phase : requires transition detection logic, classically used for off-chip communication (like a 3D Link)

2-phase data communication (2)

- For 2-phase protocol, choice of different encoding :
 - Level Encoding (also called LEDR for dual rail [R. Manohar], and LETS for its 1-of-n generalization [S. Nowick])
 - Transmission is divided in two phases : Odd and even
 - Detection is performed using XOR gates

Even Phase				
Value	A3	A2	A1	A0
'0'	0	0	0	0
'1'	0	0	1	1
'2'	0	1	0	1
'3'	1	0	0	1

Odd Phase				
Value	A3	A2	A1	A0
'0'	0	0	0	1
'1'	0	0	1	0
'2'	0	1	0	0
'3'	1	0	0	0

Convertion to binary is facilitated

A0 is used to transport odd/even phaseOther bits to transport the value

- Transition Signaling
 - Called 1T-of-n : one transition on Rail i indicate the i value
 - Was already existing for dual-rail, but not widely used.
 - Generalization proposed for 1-of-n

Value	A1	A0
'0'	-	т
'1'	т	-

Value	A3	A2	A1	A0
ʻ0'	-	-	-	т
'1'	-	-	т	-
'2'	-	Т	-	-
'3'	т	-	-	-

Convertion to 1-of-n 4-phase is facilitated

→ Proposal : Use 2-phase / 1T-of-4 for off-chip communication (3D Link)

4-phase to 2-phase converter (1)

Converter Behavior

- 4-phase data used as clock
- Input Data Rising edge generates a twophase transition
- Input Data Falling edge is ignored on twophase side. Used to generate the acknowledgement signal
- C-element synchronizes four-phase and two-phase
- Performance Analysis
 - Forward Path
 - Flip-Flop
 - Backward Path
 - Spacer Detection = Xor + C-element
 - Data Detection = 2 Xor gates for detection
 + Xor Gate + Inverter + C-element

4-phase to 2-phase converter (2)

leti & li/t

2-phase to 4-phase converter (1)

Converter Behavior

Ceatech

- 4-phase ack_in used as clock
- Four-phase acknowledge coordinates the conversion
- XOR between current and previous data used to generate the four-phase data directly.

Performance Analysis

- Forward Path
 - Data = Latch + XOR Gate
 - Spacer =2 Latches + XOR Gate
- Backward Path
 - 2 Latches + Xor

leti & list

2-phase to 4-phase converter (2)

leti & li/t

- Introduction
- 2-phase Data Link Converter Principle for 3D
- 2-phase Data Link Converter Design
- Experimental Results
- Conclusions & Perspectives

Protocol Converter Implementation

Ceatech 4-phase vs 2-phase : Link Evaluation

leti & li/t

© CEA. All rights reserved DACLE Division | January 2015 | 20

Ceatech

2x2 ANoC Testcase Evaluation

- NoC Implementation
 - **2x2** Asynchronous NoC (2D only, not 3D)
 - Each router integrates a 4⇔2 protocol converter
 - **—** 32-bit data long links (*2mm length, one segment only*)
 - 32nm STMicro typical conditions
- Traffic Analysis
 - 256 NoC words
 - 1 packet every 2-µsec
 - Extract Average Latency & Throughput Values

	Implementation	Latency	Throughput	Leakage Power	Dynamic Power	Total Power	
	4-phase ANoC (standard implementation)	3.58ns	947 MFlits	1.36 mW	7.415 mW	8.77 mW	
	4-phase ANoC (with Protocol Converters)	3.6ns	1.24 GFlits	1.39 mW	5.92 mW	7.32 mW	
	Overhead	+0.56%	+31%	+2.2%	-20.2%	-16.5%	
•	© CEA. All rights reserved DACLE Division January 2015 21						

2mm Data Link (1 segment)

- Introduction
- 2-phase Data Link Converter Principle for 3D
- 2-phase Data Link Converter Design
- Experimental Results
- Conclusions & Perspectives

Ceatech Protocol Converters : Related Work

Author & Reference	Converter	Four-phase	Two-phase	Comment
McLaughlin, IEEE Trans. on VLSI, 2009	Complex	Dual Rail	LEDR	Distributed Control
P. McGee, Async'2008	Complex	1-of-n	Level Encoded - LETS	Distributed Control
C. LaFrieda, Async'2010	Complex	Dual Rail	LEDR	Custom Cells
M. Cannizzaro, Async'2012	Complex	m-of-n	PID – Level Encoded	Distributed Control
W. Athas, Patent US005388241	Simple	Req/Ack	Req/Ack	Bundle-Data Local
T. Hanyu, Patent US2013073771	Complex	Dual-Rail	Level Encoded	Distributed Control
T. Pontius, Patent US20080270875	Simple	Req/Ack	Req/Ack	Bundle-Data Multi Node Control
P. Vivet PhD document, 2001	Simple	Dual Rail	"1T-of-2"	QDI, dedicated cells, Limited to dual-rail
This Work	Simple	1-of-n	1T-of-n	QDI, Full Std-Cell Local Conversion

leti & li/t

Conclusions & Perspectives

- New asynchronous protocol circuit converters
 - Proposal of new code 1T-of-N (Transition signalling)
 - New protocol converter with High throughput and Low latency
 - Can achieve 1Gflit/s transfer
 - Modular for wide data paths. Easy implementation : full std-cell.
- Good solution for 3D communication
 - **No global clock distribution**, no synchronization between different dies
 - Faster off-chip data communication compared to standard 4-phase
 - **—** Power saving by reducing number of transitions

Perspectives

eti & lis

- Integrate the proposed protocol converters in a full 3D architecture
- Evaluate the protocol converters performances on a 3D link

Acknowledgment

This work was funded thanks to the French national program 'programme d'Investissements d'Avenir, IRT Nanoelec' ANR-10-AIRT-05

Any questions ?

