Iterative Disparity Voting Based Stereo Matching Algorithm and Its Hardware Implementation

Zhi Hu, Yibo Fan, Xiaoyang Zeng

School of Microelectronics Fudan University, Shanghai, China

Outline

- Introduction
 - Background
 - Motivation
- Proposed Algorithm
- Proposed Hardware Architecture
- Experimental Results
- Conclusion

Stereo Matching – Problem Definition

Extract disparity information from binocular images

Steps in a Nutshell

- 1. Find the corresponding pixel
- 2. Use definition to calculate

$$d = y_{p_r} - \left(y_{p_l} - d_{max}\right)$$

Key Issue

 How to accurately find the corresponding pixel?

Stereo Matching – Vistas and Barriers

Prospective Applications

- Free View Point TV
- Robotic Vision
- Automotive Control

The problem we are facing

- Software approach: HIGH accuracy + LOW speed
- Hardware approach: HIGH speed + LOW accuracy

Existing Approaches – An Overview

Software-Oriented Approaches: Global Optimization

- Graph Cut
- Belief Propagation
- Dynamic Programming

What Hardware Prefers

- Data access with spatial locality
- Parallelizable computing
- Can be efficiently mapped to a high-throughput pipeline

Hardware-Oriented Approaches: Local Refinement

- Coarse Estimation + Efficient & Effective Refinement
- Locality ⊃ Efficiency? Typically, Yes!
- Locality ⊃ Quality? Our goal!

6

Steps of a Typical Hardware Approach

1. Coarse Disparity Map Generation

- Compute matching cost \rightarrow Establish correspondence
 - Census Transform
 Not Robust enough
 - Pixel-Based SAD
 Not accurate enough
 - Region-Adaptive SAD
 Not hardware-friendly

2. Disparity Map Refinement

- Make disparity distribution more aligned to the outline of the objects
 - Bilateral Filter
 Need floating-point computation for high quality
 - Common Disparity Voting Improvement is minor

3. Occlusion Detection and Filling

Extrapolate the disparities of occluded areas

Our Contribution

1. **Coarse Disparity Map Generation**

- Hardware-friendly cost function
- Hardware architecture for parallel calculation
- Trade-off Efficiency & Implementation Cost > Accuracy
 - · We can leave further enhancement to the subsequent refinement

2. Disparity Map Refinement

- Iterative disparity voting
- Weighted voting
- Memory consumption reduction

cascading + interleaving for error suppression

- n for **HD** processing
- 3. Occlusion Detection and Filling
 - Pipelined occlusion handling

Outline

- Introduction
- Proposed Algorithm
 - Coarse map generation
 - Map refinement
 - Occlusion handling
- Proposed Hardware Architecture
- Experimental Results
- Conclusion

Coarse Map Generation

Cost computation (use luminance)

 Note that result of the horizontally adjacent pixel can be partially used cost(p_l, p_r) =

$$\begin{split} & \sum_{-1 \le i, j \le 1} \left| I_{l}(x_{p_{l}} + i, y_{p_{l}} + j) - I_{r}(x_{p_{r}} + i, y_{p_{r}} + j) \right| + \\ & \sum_{-1 \le i, j \le 1} \left| \frac{\Delta I_{l}(x_{p_{l}} + i, y_{p_{l}} + j)}{\Delta x} - \frac{\Delta I_{r}(x_{p_{r}} + i, y_{p_{r}} + j)}{\Delta x} \right| + \\ & \sum_{-1 \le i, j \le 1} \left| \frac{\Delta I_{l}(x_{p_{l}} + i, y_{p_{l}} + j)}{\Delta y} - \frac{\Delta I_{r}(x_{p_{r}} + i, y_{p_{r}} + j)}{\Delta y} \right| \\ \end{split}$$

Get the disparity for every pixel (in the left image by default)

Less cost ⊃ Higher probability of being the correct match

$$d_{p_l} = \arg\min_i \operatorname{cost}(p_l, p_{r_i})$$

Comparison of Coarse Map Quality

- a) Census Transform
- b) Pixel-Based SAD
- c) Proposed Method
- d) Ground Truth
- Less bad estimation
- More friendly for the subsequent refinement
- Denote the coarse disparity map as **D**⁽⁰⁾.

Map Refinement

Iterative Weighted Disparity Map Voting

Use neighboring pixels of similar disparity to amend wrong estimation region

6 rounds of vertical + horizontal voting

- $V_1 \rightarrow H_1 \rightarrow V_2 \rightarrow H_2 \rightarrow V_3 \rightarrow H_3$ After 6 rounds, the result tends to converge
- Denote the resulting refined map of each stage as $D^{(1)}$, $D^{(2)}$, ..., $D^{(6)}$
- How do the "voting" processes proceed?

Details of Voting (to be continued)

Select candidates for voting (use truncated RGB)

Assumption

- Correlation between luminance difference & disparity difference
- Criteria
 - Vertical
 - Horizontal

$$\forall \text{channel}_{C} \left(|I_{C}(x_{0}+i, y_{0}) - I_{C}(x_{0}, y_{0})| \leq \tau \right) \quad -r \leq i \leq r$$

Ochannel_C (| $I_C(x_0, y_0 + j) - I_C(x_0, y_0) | \le \tau$) − $r \le j \le r$

 • Vote use weight function

Function

• Vertical

$$w_{D^{(k)}(x_0+i,y_0)} = \begin{cases} i/2 + D^{(k)}(x_0+i,y_0)/8 & i \ge 0\\ -i + D^{(k)}(x_0+i,y_0)/8 & i < 0 \end{cases}$$

Horizontal

$$W_{D^{(k)}(x_0, y_0+j)} = |i| + D^{(k)}(x_0, y_0+j) / 8$$

- Why so?
 - *i* term: amend areas where wrong disparities agglomerate
 - Emphasize peripheral pixels
 - Trivial negative impact on small voting areas with correct disparities
 - disparities are virtually the same

Details of Voting (continue)

- Vote use weight function
 - Function • Vertical $W_{D^{(k)}(x_0+i,y_0)} = \begin{cases} i/2 + D^{(k)}(x_0+i,y_0)/8 & i \ge 0\\ -i + D^{(k)}(x_0+i,y_0)/8 & i < 0 \end{cases}$

• Horizontal
$$W_{D^{(k)}(x_0, y_0+j)} = |i| + D^{(k)}(x_0, y_0+j)/8$$

- Why so?
 - *i* term
 - Vertical *i*/2 and -*i*: write-back strategy (pixels above are more accurate)
 - Horizontal |*i*|: write-back not used (timing)
 - **D**^(k) term: reduce the effect of pixels with extremely low disparity
 - Empirically, wrongly-estimated disparities could be small
 - Background area with low disparity and smooth disparity transition is not affected by the term

Some Intermediate Results

With and without weight function

 Major differences are highlighted by black squares

- Generated refined disparity map after each vote
 - a) \rightarrow f):
 - $D^{(1)}, D^{(2)}, D^{(3)}, D^{(4)}, D^{(5)}, D^{(6)}$
 - Refine → Converge

Occlusion Handling

- Method: Left-Right Check
- Is this pixel Occluded?
 - We Define
 - **D**⁽⁶⁾₁ : output map of the final voting of the left image
 - $D^{(6)}_r$: output map of the final voting of the right image
 - Criterion

$$\left| D_{l}^{(6)}(x, y) - D_{r}^{(6)}(x, y - D_{l}^{(6)}(x, y)) \right| \le \tau$$

• T = 1

• How to extrapolate?

- Two-pass scan & flood-fill
 - From left \rightarrow right: occluded? Most immediate non-occluded pixel on the left
 - From right \rightarrow left: occluded? Most immediate non-occluded pixel on the right

Outline

- Introduction
- Proposed Algorithm
- Proposed Hardware Architecture
 - Overview
 - Coarse map generation
 - Map refinement
 - Occlusion handling
- Experimental Results
- Conclusion

Overall Architecture

- Left and right image computed in parallel
- Fully-Pipelined
- Note the truncation (reduce buffer size)

Coarse Map Generation (to be continued)

Cost Computation

Architecture Observations

- Vertical Voting
 Architecture (previous slide)
 - Row buffer
 - Delay buffer
 - Write back

Horizontal Voting Architecture

- Generally the same
- No write back
 - TIMING!

Memory Reduction of Vertical Voting

Rough Estimation

- For an 1920×1080 image with 64 disparity level
 - Vertical voting row buffer size: 620KB!!
- Solution
 - Slice-Based Processing
 - Correctness? Extend slices into blind zones.

Set the width of each slides = 320 pixels

Vertical voting row buffer size:

124KB

But slight increase in computation time due to the extensions

Raster → Slice-Based scan-order

Occlusion Handling

Occlusion Detection

- Criterion given before $\left| D_l^{(6)}(x, y) - D_r^{(6)}(x, y - D_l^{(6)}(x, y)) \right| \le 1$
- In practice, judge
 - $D^{(6)}_{l}(x, y) / 2 = D^{(6)}_{r}(x, y D^{(6)}_{l}(x, y))$?

Occluded Pixel Extrapolation

to avoid stalls in pipeline

Outline

- Introduction
- Proposed Algorithm
- Proposed Hardware Architecture
- Experimental Results
 - Hardware Resource Consumption and Performance
 - Quality of Output Results
- Conclusion

Overhead and Performance

- Synthesized on Altera Stratix-IV EP4S40G2
- Problem scale: 1920x1080 images with 64 disparity levels
 - **f**_{max} = 121.76MHz
 - 1920x1080-image @ 48fps
 - MDES(millions of disparities estimated/second) 6370M
 - **Memory** 1,040kbit/14,283kbit (7.3%)
 - Registers 96,398/182,400(52.8%)
 - Combinational ALUTs 104,632/182,400(57.3%)

Quality of Output Results

Test images: Middlebury

- Tsukuba, Venus, Teddy, Cones
- 1st to 3rd row
 - Selected existing works
- 4th row
 - Our work
- 5th row
 - Ground Truth
- High-Quality Results
 - But not very well in the Venus test case
 - Involves large-area diagonal disparity gradient
 - Could be improved in the future

Conclusion

- Proposed an iterative weighted disparity voting based local stereo matching algorithm
- Proposed corresponding hardware architecture
- Synthesis predicts system's capability in processing 1920×1080-image @ 48fps with low memory cost
- Test results reflect high quality

Thank you very much!

Any questions?