ANALYTICAL PLACEMENT FOR RECTILINEAR BLOCKS
 Yasuhiro Takashima
 University of Kitakyushu

Outline

1. Background
2. Rectilinear block placement
3. Related works
4. Proposed method
5. Experiments
6. Conclusion remarks

Background

* LSI production method: much improved
* Large number of elements on one chip
* Design method: not so improved
* Gap between the production and the design: critical
* Using IP modules: much promising
* Problem: Shape of IP modules may be rectilinear
* Fast rectilinear placement: important

Rectilinear blocks placement

* [Input] Set of blocks including Rectilinear blocks, Net-list, Chip outline
* [Output] Block placement
* [Objective] Minimization of total wire-length
* [Constraint] No overlap

Framework of previous works

* Basically, topological relation based
* SP, BSG, B*-tree, ...
* Utilization of stochastic optimization
* SA, ...

1. Divide the rectilinear block into a set of rectangles
2. Add constraints to remain the shape in the perturbation
3. Enhance the position calculation to recover the shape

Characteristic of topological relation based method

* Pros: No overlap guarantee
* from the nature of topological relation
* Cons: Slow convergence
* from the nature of stochastic optimization method

Fast placement method: Necessary
Analytical placement is promising

Analytical placement

* Utilization of the gradient of the objective function
* Requirement: differentiable objective function
\rightarrow approximation of max and min functions
* Objective function: non-linear, in general
* Requirement: no constraint
\rightarrow consideration of relaxed problem

Relaxed problem

* [Input] Set of blocks including Rectilinear blocks, Net-list, Chip outline
* [Output] Block placement
* [Objective] Minimization of total wire-length and less overlap
* To obtain less overlap
* Density function: widely used
* hard to capture overlap among rectilinear blocks
* Direct consideration: Overlap Removable Length

Approximation of max and min functions

* Objective function: max and min function included * total wire-length
* overlap removable length
* max and min function: not differentiable
* need to approximate them to be differentiable
* Log-Sum-Exponential (LSE) :
* Pros: Fast convergence

$$
\mathrm{LSE}=t \log \sum_{i} e^{\frac{x_{i}}{t}}
$$

* Cons: Numerical unstableness
t : smoothing parameter
* Stable LSE [Funatsu, 2009]: Numerical stability

Stable-LSE (SLSE)

$$
\mathrm{SLSE}=X_{\max }+t \log \sum_{i} e^{\frac{\left(x_{i}-X_{\max }\right)}{t}}
$$

where $X_{\max }$ is the maximum number of $\left\{x_{i}\right\}$

* for all $i, x_{i}-X_{\text {max }} \leq 0$
* at least one $i, x_{i}-X_{\max }=0$
thus, SLSE is numerical stable

Overlap Removable Length (ORL)

* Calculate the necessary length to remove the overlap * for x-coordinate:
$\operatorname{ORL}_{1,2}^{X}=\max \left\{\min \left\{x_{1 R}-x_{2 L}, x_{2 R}-x_{1 L}\right\}, 0\right\}$
* similar way for y-coordinate
* ORL for block 1 and 2:

ORL $_{1,2}=\min \left\{\right.$ ORL $_{1,2}^{X}$, ORL $\left._{1,2}^{Y}\right\}$

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them
* however, there is a main drawback:

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them
* however, there is a main drawback:

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them
* however, there is a main drawback:

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them
* however, there is a main drawback:

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them * however, there is a main drawback:

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them
* however, there is a main drawback:

Utilization of ORL:

 - rectangle decomposition* Similar to topological relation based method
* Rectilinear block \rightarrow a set of rectangle blocks * seems to be easy to handle them * however, there is a main drawback:

Analysis of ORL

* from the definition of ORL:

$$
\mathrm{ORL}_{1,2}=\min \left\{\mathrm{ORL}_{1,2}^{X}, \mathrm{ORL}_{1,2}^{Y}\right\}
$$

* Equivalent to the minimum length to remove overlap for any directions
* for rectangles, consideration of only x - and y directions is enough
* For rectilinear blocks, enhance ORL to seek the minimum length for any directions

Enhancement of ORL

Pre-process

1. Calculate each side profile of each block
2. For each block pair, enumerate the non-overlap conditions

Side profile

* Outer shape of each side

Side profile

* Outer shape of each side * Bottom profile

Side profile

* Outer shape of each side * Bottom profile * Top profile

Side profile

* Outer shape of each side * Bottom profile * Top profile * Left profile

Side profile

* Outer shape of each side * Bottom profile * Top profile
* Left profile
* Right profile

Side profile

* Outer shape of each side
* Bottom profile
* Top profile
* Left profile
* Right profile
* Complexity: O(m)
* m: \# corners

Enumerate Conditions

* Non-overlap conditions:
* represented by relative position

Enumerate Conditions

* Non-overlap conditions:
* represented by relative position ${ }^{(0,8)}$

$$
\begin{aligned}
& \Delta_{x}<-8, \\
-8 & \leq \Delta_{x}<-6, \Delta_{y} \geq 6 \\
-6 & \leq \Delta_{x}<-5, \Delta_{y} \geq 7 \\
-5 & \leq \Delta_{x}<-3, \Delta_{y} \geq 11, \\
-3 & \leq \Delta_{x}<-1, \Delta_{y} \geq 12 \\
-1 & \leq \Delta_{x}<6, \Delta_{y} \geq 13 \\
6 & \leq \Delta_{x}<11, \Delta_{y} \geq 9
\end{aligned}
$$

$$
\text { where }\left\{\begin{array}{l}
\Delta_{x}=x_{B}-x_{A}, \text { and } \\
\Delta_{y}=y_{B}-y_{A}
\end{array}\right.
$$

$11 \leq \Delta_{x}$

ORL

Optimization framework

* Objective function: $\sum \mathrm{WL}+\alpha\left(\sum \mathrm{ORL}^{2}+\sum\right.$ ORL_wcb $)$
where
* WL: wire length with HPWL
* ORL: Overlap removable length
* ORL_wcb: Overlap removable length with chip boundary

Optimization flow

1. Construct an initial placement randomly.
2. Set the smoothing parameter $t=10$.
2.1. Optimize the placement with $\alpha=0$.
2.2. Optimize the placement with larger α, iteratively.
3. Set the smoothing parameter $t=0.01$.
3.1. Optimize the placement with larger α, iteratively.

Experiments

Experimental results

* Average of 100 trials
* WL Comparison: Rectangle placement with B*-tree * n100: 32.06, n200: 58.33, n300 71.00

name	ORL	WL	Runtime $[\mathrm{sec}]$
n 100	0.204	32.44	5.98
n 200	0.248	64.05	56.95
n 300	0.770	73.25	132.41

Experimental results

* Average of 100 trials
* WL Comparison: Rectangle placement with B^{*}-tree * n100: 32.06, n200: 58.33, n300 71.00

name	ORL	WL	Runtime $[\mathrm{sec}]$
n 100	0.204	32.44	5.98
n 200	0.248	64.05	56.95
n 300	0.770	73.25	132.41

n100

n200

n300

Conclusions

* Proposition of the analytical placement for the rectilinear blocks.
* to remove overlap: ORL
* max and min approximation: Stable-LSE
* Confirmation of the proposed method, empirically

Future works

* Refinement of the speed
* Consideration of the routability
* Application to other problems
* the proposed method: not limited rectilinear blocks
* applicable to the problem representing the nonoverlap conditions with the differentiable functions

