ANALYTICAL PLACEMENT FOR RECTILINEAR BLOCKS

Yasuhiro Takashima University of Kitakyushu

Outline

1. Background

 $\langle \bullet \rangle$

2. Rectilinear block placement

3. Related works

4. Proposed method

5. Experiments

6. Conclusion remarks

Background

LSI production method: much improved
Large number of elements on one chip
Design method: not so improved
Gap between the production and the design: critical

* Using IP modules: much promising* Problem: Shape of IP modules may be rectilinear

* Fast rectilinear placement: important

Rectilinear blocks placement

- * [Input] Set of blocks including Rectilinear blocks, Net-list, Chip outline
- * [Output] Block placement

- * [Objective] Minimization of total wire-length
- * [Constraint] No overlap

Framework of previous works

* Basically, topological relation based
* SP, BSG, B*-tree, ...
* Utilization of stochastic optimization
* SA, ...

- 1. Divide the rectilinear block into a set of rectangles
- 2. Add constraints to remain the shape in the perturbation
- 3. Enhance the position calculation to recover the shape

Characteristic of topological relation based method

* Pros: No overlap guarantee * from the nature of topological relation

*** Cons:** Slow convergence

* from the nature of stochastic optimization method

Fast placement method: Necessary

Analytical placement is promising

Analytical placement

* Utilization of the gradient of the objective function
 * Requirement: differentiable objective function
 → approximation of max and min functions
 * Objective function: non-linear, in general
 * Requirement: no constraint
 → consideration of relaxed problem

Relaxed problem

* [Input] Set of blocks including Rectilinear blocks, Net-list, Chip outline

* [Output] Block placement

 $\langle \bullet \rangle$

* [Objective] Minimization of total wire-length and less overlap

* To obtain less overlap
* Density function: widely used
* hard to capture overlap among rectilinear blocks
* Direct consideration: Overlap Removable Length

Approximation of max and min functions

* Objective function: max and min function included
* total wire-length
* overlap removable length
* max and min function: not differentiable
* need to approximate them to be differentiable

* Log-Sum-Exponential (LSE) :

 $\langle \bullet \rangle$

* **Pros:** Fast convergence

* Cons: Numerical unstableness

* Stable LSE [Funatsu, 2009]: Numerical stability

$$LSE = t \log \sum_{i} e^{\frac{X_i}{t}}$$

t: smoothing parameter

Stable-LSE (SLSE)
SLSE =
$$X_{max} + t \log \sum_{i} e^{\frac{(x_i - X_{max})}{t}}$$

where X_{max} is the maximum number of $\{x_i\}$

* for all *i*, $x_i - X_{max} \le 0$ * at least one *i*, $x_i - X_{max} = 0$

thus, **SLSE** is numerical stable

Overlap Removable Length (ORL)

 $\langle \bullet \rangle$

* Calculate the necessary length to remove the overlap * for x-coordinate: ORL^X_{1,2} = max{min{x_{1R} - x_{2L}, x_{2R} - x_{1L}},0} * similar way for y-coordinate

* ORL for block 1 and 2: $ORL_{1,2} = \min \left\{ ORL_{1,2}^{X}, ORL_{1,2}^{Y} \right\}$ x_{IL} x_{2L} x_{IR} x_{2R}

11

* Similar to topological relation based method
* Rectilinear block → a set of rectangle blocks
* seems to be easy to handle them
* however, there is a main drawback:

12

* Similar to topological relation based method
* Rectilinear block → a set of rectangle blocks
* seems to be easy to handle them
* however, there is a main drawback:

13

Analysis of ORL

* from the definition of ORL:

 $ORL_{1,2} = min \{ ORL_{1,2}^X, ORL_{1,2}^Y \}$

* Equivalent to the minimum length to remove overlap for any directions
* for rectangles, consideration of only x- and ydirections is enough
* For rectilinear blocks, enhance ORL to seek the

minimum length for any directions

Enhancement of ORL

Pre-process

Calculate each side profile of each block
 For each block pair, enumerate the non-overlap conditions

* Outer shape of each side

 \diamond

* Outer shape of each side * Bottom profile

* Outer shape of each side
* Bottom profile
* Top profile

* Outer shape of each side
* Bottom profile
* Top profile
* Left profile

* Outer shape of each side
* Bottom profile
* Top profile
* Left profile
* Right profile

* Outer shape of each side
* Bottom profile
* Top profile
* Left profile
* Right profile

 $\langle \bullet \rangle$

* Complexity: O(m)
* m: # corners

Enumerate Conditions

 $\langle \bullet \rangle$

* Non-overlap conditions:* represented by relative position

 \diamond

Enumerate Conditions

* Non-overlap conditions:
* represented by relative position

 $\Delta_x < -8,$ $-8 \leq \Delta_x < -6, \Delta_y \geq 6,$ $-6 \leq \Delta_x < -5, \Delta_y \geq 7,$ $-5 \leq \Delta_x < -3, \Delta_y \geq 11,$ $-3 \leq \Delta_x < -1, \Delta_y \geq 12,$ $-1 \leq \Delta_x < 6, \Delta_y \geq 13,$ $6 \leq \Delta_x < 11, \Delta_y \geq 9,$ $11 \leq \Delta_x$

(3,13)(0, 12)(8, 12)(11, 9)(6, 12)(0, 8)(6,9) A В (9,4) (6, 2)(0, 4)(8, 2)(6, 1)(2, 0)(0, 0)(4, 0)

(2, 14)

where
$$\begin{cases} \Delta_x = x_B - x_A, \text{ and} \\ \Delta_y = y_B - y_A \end{cases}$$

(2, 14)(3, 13)(0, 12)(8, 12)(11.9)(6, 12) (+) (0, 8)(6, 9)B (6, 2) Α (9, 4)(0, 4)(6, 1)(2,0)(0, 0)(4, 0) $\max \{\Delta_x + 8, 0\},\$ $\max \{\min \{-\Delta_x - 8, \Delta_x + 6\}, 0\} + \max \{-\Delta_y + 6, 0\},\$ $\max \{\min \{-\Delta_x - 6, \Delta_x + 5\}, 0\} + \max \{-\Delta_y + 7, 0\},\$ $\max \{\min \{-\Delta_x - 5, \Delta_x + 3\}, 0\} + \max \{-\Delta_y + 11, 0\},\$ $\max \{\min \{-\Delta_x - 3, \Delta_x + 1\}, 0\} + \max \{-\Delta_y + 12, 0\},\$ $\max \{\min \{-\Delta_x - 1, \Delta_x - 6\}, 0\} + \max \{-\Delta_y + 13, 0\},\$ min $\max \{\min \{-\Delta_x + 6, \Delta_x - 11\}, 0\} + \max \{-\Delta_y + 9, 0\},\$ $\max \{\min \{-\Delta_x - 8, \Delta_x + 6\}, 0\} + \max \{\Delta_y + 8, 0\},\$ $\max \{\min \{-\Delta_x - 6, \Delta_x - 7\}, 0\} + \max \{\Delta_y + 14, 0\},\$ $\max \{\min \{-\Delta_x + 7, \Delta_x - 11\}, 0\} + \max \{\Delta_y + 8, 0\},\$ $\max\{-\Delta_x + 11, 0\}$

Optimization framework

* Objective function: $\sum WL + \alpha \left(\sum ORL^2 + \sum ORL_wcb\right)$

where

*WL: wire length with HPWL

* ORL: Overlap removable length

* ORL_wcb: Overlap removable length with chip boundary

Optimization flow

Construct an initial placement randomly.
 Set the smoothing parameter t = 10.
 Optimize the placement with α = 0.
 Optimize the placement with larger α, iteratively.
 Set the smoothing parameter t = 0.01.
 Optimize the placement with larger α, iteratively.

Experiments

 $\langle \bullet \rangle$

* CPU: Intel Core i5-4570, 3.2GHz * Memory: 4GB * OS: LinuxMint 17 (qiana) * gcc: version 4.8.2 * Non-linear programming solver: liblbfgs 1.10 * Benchmarks **#rectilinear #blocks** #nets name blocks n100 100 10 885 n200 200 156 1585 300 243 1893 n300

Experimental results

* Average of 100 trials * WL Comparison: Rectangle placement with B*-tree * n100: 32.06, n200: 58.33, n300 71.00

name	ORL	WL	Runtime [sec]
n100	0.204	32.44	5.98
n200	0.248	64.05	56.95
n300	0.770	73.25	132.41

Experimental results

* Average of 100 trials * WL Comparison: Rectangle placement with B*-tree * n100: 32.06, n200: 58.33, n300 71.00

name	ORL	WL	Runtime [sec]
n100	0.204	32.44	5.98
n200	0.248	64.05	56.95
n300	0.770	73.25	132.41

Conclusions

* Proposition of the analytical placement for the rectilinear blocks.
* to remove overlap: ORL
* max and min approximation: Stable-LSE
* Confirmation of the proposed method, empirically

Future works

* Refinement of the speed
* Consideration of the routability
* Application to other problems
* the proposed method: not limited rectilinear blocks
* applicable to the problem representing the non-overlap conditions with the differentiable functions