Cut Mask Optimization with Wire Planning in Self-Aligned Multiple Patterning Full-Chip Routing

Shao-Yun Fang

Jan 21, 2015

Department of Electrical Engineering National Taiwan University of Science and Technology

1

Outline

Outline

Self-Aligned Multiple Patterning

- Self-aligned multiple patterning (SAMP) has become a leading candidate of multiple patterning lithography
 - The intrinsic self-aligning property makes SAMP immune from the overlay error among multiple masks

The process of self-aligned double patterning (SADP)

Self-Aligned Multiple Patterning (cont'd)

- Double patterning will not be sufficient for sub-10nm technology nodes
- Self-aligned quadruple patterning (SAQP) or even selfaligned octuple patterning (SAOP) will be required
- The process of SAQP

1-D Grid-based Layout Fabrication

- One-dimensional (1-D) grid-based layout structure will be adopted in sub-10 nm nodes
- To fabricate 1-D wire structure, a cut mask is required

Hotspots on Cut Masks

For more advanced technology nodes where SAQP or SAOP is adopted, designing cut masks becomes much more difficult

Cut Mask-aware Routing for SAMP

- Several existing SADP or SAQP routers, where cut mask manufacturability is either not considered or considered only for SADP
 - Mirsaeedi et al., SPIE'11
 - Gau and Pan, ISPD'12
 - Kodama et al., ASPDAC'13
 - Du et al., DAC'13
 - Nakajima et al., SPIE'14
 - _ Lie et al., DAC'14
- We propose the *first work* of cut mask-aware full-chip routing for general SAMP processes

Outline

Cut Mask-aware Routing Rules

- Infeasible wire configurations are identified for cut mask manufacturability
 - The minimum width rule (min_w) of cut masks
 - The minimum spacing rule (min_s) of cut masks
- Cut mask violations against the minimum cut width rule are categorized according to violation directions:
 - Parallel width violations

w+2s

w+2s

w: wire width *s*: wire spacing

Cut Mask-aware Routing Rules (cont'd)

Cut mask violations against the minimum cut width rule

Perpendicular width violations

w: wire width *s*: wire spacing

Diagonal width violations

Cut Mask-aware Routing Rules (cont'd)

Cut mask violations against the minimum cut spacing rule are similarly categorized

Parallel spacing violations

Perpendicular spacing violations

Diagonal spacing violations

Infeasible Wire Configurations

- □ we assume that min_w and $min_s \in (2.5F, 3.0F)$
- Infeasible wire configurations considered in this work:
 - Cut width violations

Cut spacing violations

Post Layout Modification

- Cut mask violations might not be avoided during full-chip routing in SAMP
- Post-layout modification techniques can be applied <u>Technique 1</u> Wire extension

Post Layout Modification (cont'd)

Post-layout modification techniques can be applied <u>Technique 2</u> Dummy wire insertion

Issues of Post-Layout Modification

- Parallel width violations caused by close line ends on the same track cannot be solved
- Parallel spacing violations and diagonal violations may be eliminated by slightly extending line ends

Issues of Post-Layout Modification (cont'd)

- A perpendicular violation can only be resolved by inserting a dummy wire of the same length as *a single track segment* or *a single wire segment*
- Extended wire segments and inserted dummy wires may cause additional mask violations

Outline

SAMP Full-Chip Routing Flow

A panel

SAMP Full-Chip Routing Flow

A panel

Track Routing w/o SAMP Consideration

- Track routing places the major trunks of each net on specific routing tracks
- If wire segments are assigned to tracks in an arbitrary order, many single track/wire segments will be generated

ILP Notations

- \Box s_i : the i-th wire segment.
- $\Box t_j: \text{ the } j\text{-th track.}$
- \Box r_{jk} : the k-th interval of track t_j
- x_{ij} : 0/1 variable. $x_{ij} = 1$ if segment s_i is assigned to track t_j
- y_{jk} : 0/1 variable. $y_{jk} = 1$ if interval r_{jk} is occupied by some segment
- *tl_i*: the leftmost track of the panel segment s_i belongs to
- *tr_i*: The rightmost track of the panel segment s_i belongs to

ILP-based Wire Planning

Objective:

minimize
$$\sum st_{jk} + \sum sw_{jk}$$

- st_{jk} : 0/1 variable. $st_{jk} = 1$ if interval r_{jk} is a single track segment
- sw_{jk} : 0/1 variable. $sw_{jk} = 1$ if interval r_{jk} is a single wire segment
- Minimize the total length of single track and wire segments
- Subject to
 - Each wire segment is exactly assigned to one specific track in the panel it belongs to

$$\sum x_{ij} = 1, \forall s_i$$

$$x_{ij} = 0, \forall s_i, \forall t_j \notin [tl_i, tr_i]$$

ILP-based Wire Planning (cont'd)

Subject to

- Two conflicting segments will not be assigned to the same track $x_{aj} + x_{bj} \le 1$, $\forall s_a \text{ and } s_b \text{ are conflicting}$
- Determine whether a track interval r_{jk} is empty ($y_{jk} = 0$) or occupied by some wire segment ($y_{jk} = 1$)

$$\sum_{s_i \in S_k} x_{ij} = y_{jk}, \forall r_{jk}$$

- Inspect whether a track interval r_{jk} becomes a single track ($st_{jk} = 1$)/wire ($sw_{jk} = 1$) segment or not $-y_{jk} + y_{(j-1)k} + y_{(j+1)k} - 1 \le st_{jk}, \forall r_{jk}$ $y_{jk} - y_{(j-1)k} - y_{(j+1)k} \le sw_{jk}, \forall r_{jk}$

ILP Reduction

Panel-based wire planning

- Solve the wire planning problem for one panel at a time
- Sequentially perform track routing on panels from left to right
- Use the first segment in p_m to optimize the last segment in p_{m-1}
- Put the segment that can not be optimized in p_m to the last track

ILP Reduction (cont'd)

Line end-based interval reduction

- Tracks are divided into intervals according to the line ends of wire segments
- Since the lengths of intervals are various now, the objective function needs to be modified:

minimize

$$\sum c_{jk} \cdot st_{jk} + \sum c_{jk} \cdot sw_{jk}$$

• c_{jk} : #global tiles r_{jk} contains

SAMP Full-Chip Routing Flow

A panel

Cut Mask-aware Detailed Routing

- Cut mask-aware detailed routing may
 - Avoid generating additional mask violations
 - Fix some violations on already routed wires

Cut Mask-aware Detailed Routing Principles

- We have the following principles as detailed routing a wire:
 - For parallel mask violations
 - Avoid too close line ends on the same track and too short wire segments
 - For diagonal mask violations
 - Avoid close opposite line ends and overlapping line ends on nearby but not adjacent tracks
 - For perpendicular mask violations
 - Avoid single track/wire segments
 - Encourage wires to eliminate single track/wire segments during routing

Cut Mask-aware Detailed Routing Cost

Based on the routing principles, the cost of routing on a grid g_i from a grid g_i is defined as follows:

 $Cost(j) = Cost(i) + W_{ij} + \alpha \times Inc(j) - \beta \times Dec(j)$

- W_{ij} : the wiring cost from g_i to g_j
- Inc(j): # generated mask violations due to routing on g_j
- Dec(j): # eliminated mask violations due to routing on g_j
- Forbidden points are inserted next to the line ends of a routed path to avoid parallel width violations

Outline

Experimental Setup

- Platform
 - C++ programming language
 - 2.0 GHz Linux workstation with 56 GB memory
- Benchmark
 - 5 dense circuits from the MCNC benchmark
 - w = s = 18 nm
 - $-min_w = min_s = 50 nm$
 - $-\alpha = \beta = 0.5$
- Comparison
 - A conventional routability-driven baseline router

Experimental Results

Compared to the baseline router, our SAMP full-chip router

- Reduce mask violations by 64%
- Reduce the use of dummy wires by 36%
- Reduce routability by 0.1%
- Increase wirelength by 2%

Circuit	Baseline Router					Our SAMP Router				
	Rout.	WL	Vio.	Dum.	CPU (s)	Rout.	WL	Vio.	Dum.	CPU (s)
S5378	100%	3744	91	2185	5	99.9%	3799	32	1438	22
S9234	100%	2766	67	1682	4	99.9%	2816	19	1173	15
S13207	100%	8975	167	5086	10	99.9%	9139	60	3196	78
S15850	100%	11089	212	6559	14	99.9%	11298	82	3803	79
S38417	99.9%	24188	486	14158	30	99.9%	24890	161	9348	625
S38584	100%	33776	717	19953	57	99.9%	34576	244	12351	687
Avg.	1.00	1.00	1.00	1.00	1.00	0.999	1.02	0.34	0.64	9.08

Vio.: the mask violations after applying post-layout optimization **Dum.**: the dummy wires used for post-layout optimization

Optimized Routing Result

🔲 Wire 🔲 Spacer 📃 Cut

A routing result of the baseline router

A routing result of our SAMP router with post-layout optimization

Outline

Conclusions

- This paper proposes the first work of cut mask optimization for SAMP during full-chip routing
- The cut mask rules and the corresponding routing rules are identified to guide the router
- An ILP-based wire planning approach and cut maskaware detailed routing are proposed
- Experimental results have shown that our flow can generate routing results that optimize cut masks