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Motivation 

 Design of automotive ICs must satisfy challenging 

industry requirements for functional safety, functional 

robustness, and reliability 

 Consistent derivation and verification of hierarchical 

design constraints is crucial for high-quality AMS ICs 

 Standards like ISO 26262 and automotive design 

chain optimization require: 

 Documentation of requirements and mission profiles 

 Derivation of design constraints from requirement level 

 Rigorous enforcement of constraint compliance 

 Mask-level and independent verification 
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The ResCar 2.0 approach 

4 Website: www.rescar.de 
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Previous Work 

 The constraint-driven design paradigm [cf. Chang et 

al. 1996] has its roots in efforts to establish analog 

layout synthesis in the 1990s 

 Several parts are implemented in commercial tools 

(e.g. by Cadence Design Systems, Mentor Graphics, 

Synopsys) 

 Major components: 

A. Constraint input/derivation 

B. Support of layout implementation 

C. Constraint compliance verification 

 This presentation covers improvements in A) and C)  
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Verification Flow 

Calibre PERC Framework 



Constraint Derivation 

patterns in netlist syntax 
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* p type current mirror 

.SUBCKT cmp in out pwr 

M0 in in pwr pwr P 

M1 out in pwr pwr P 

.ENDS 

* n type differential pair 

.SUBCKT dpn in1 in2 out1 out2 a gnd 

M0 out1 in1 a gnd N 

M1 out2 in2 a gnd N 

.ENDS 

… 

  

  
 

schematic or 

extracted netlist 

• Constraint members are found by pattern matching 
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Constraint Types 

 Alignment 

Edges or center points must align  

 Symmetry 

Symmetry required for device seeds and context 

 Matched Device Orientation 

Current vectors must match 

 Matched Device Parameters 

All layout extracted parameters must match 

 Cluster 

No foreign devices may touch the hull 

W, L   =   W, L 
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Symmetry 

Layout:  Infineon Technologies 
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Matched Device Orientation 

 

Matched Orientation 

Layout:  Robert Bosch 

Notches indicating 

current direction 
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Matched Device Parameters 

Layout: Infineon Technologies 

Unmatched “delvto”: inconsistent well proximity 
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Cluster (Hierarchical Constraint) 

Cell “bc_fastcomp” 

Cell “bc_captune” 

Cluster 

Source: Robert Bosch 
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Constraint Verification 

Calibre RVE 

PERC: 
Results 

PERC-LDL: 
Assertions 

PERC-LDL: 
Results 

Schematic 
Netlist 

Calibre LVS 
rule deck 

Layout 

Constraints 

Calibre PERC 

Parse constraints 

Compare and     
cross-reference 

constraints 

Select group 
members 

Proper 
definition

? 

Apply Checks 

NO 

YES 

Constraints 
rule deck 
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Constraint Verification – DRC Code 
/* Execute DRC code – symmetry check example*/ 

Compute seed_shapes center of gravity (COG) 

COG point symmetry transform seed_shapes 

XOR transformed seed_shapes with seed shapes 

if XOR is empty { 

    if device context should be checked { 

 Resize seed_shapes by halo (from csv) 

 Get device context_layer from LVS deck 

 foreach context_layer { 

     Cookie-cut with sized seed_shapes 

     COG point symmetry transform 

     XOR transformed context_layer  

  with original context_layer  

     if XOR is empty { 

  continue 

     } else { 

  Report context_layer symmetry error 

     } 

 } 

    } else { 

 Report seed_shapes symmetry error 

    } 

} 

Shapes = symmetry_transform( 

SeedShapes, PointOrAxis) 

Result = xor(SeedShapes, Shapes) 

Result empty? 

SeedShapes = resize(SeedShapes, Halo) 

With “cookie-cut” for each ContextLayer, 

similar as above: 

Result = xor(…, symmetry_transform(…)) 

Result empty? 

No 
Yes 

Report(“Seedshape 

error”, Result)  

Report(“ContextLayer 

error”, Result)  

Report(“no error”)  

Input: SeedShapes, 

Halo, PointOrAxis, … 

No 
Yes 



Symmetry Constraint – Result 

 

15 Source: Robert Bosch 
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Experimental Results 

Hardware: Quad-core AMD Opteron 2384, 2.7GHz 

<6x 

LVS 
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Summary & Conclusions 

Summary:  

 Successful application to industrial designs 

 Identified constraint violations demonstrate the 

need for hierarchical constraint verification 

 

Outlook: 

 Implementation of additional constraint checks 

 Refinement/extension of rule-based constraint 

derivation 


