
1

Physical Verification Flow for Hierarchical

Analog IC Design Constraints

Volker Meyer zu Bexten

Markus Tristl

Göran Jerke

Hartmut Marquardt

Dina Medhat

Portions of this contribution have been funded as part of the ResCar 2.0

project (project label 01 M 3195) within the research program ICT 2020

by the German Federal Ministry of Education and Research (BMBF).

Contents

 Introduction

 Previous Work

 Verification Flow

 Constraint Derivation

 Constraint Types

 Constraint Verification

 Experimental Results

 Summary & Conclusions

2

Motivation

 Design of automotive ICs must satisfy challenging

industry requirements for functional safety, functional

robustness, and reliability

 Consistent derivation and verification of hierarchical

design constraints is crucial for high-quality AMS ICs

 Standards like ISO 26262 and automotive design

chain optimization require:

 Documentation of requirements and mission profiles

 Derivation of design constraints from requirement level

 Rigorous enforcement of constraint compliance

 Mask-level and independent verification

3

The ResCar 2.0 approach

4 Website: www.rescar.de

5

Previous Work

 The constraint-driven design paradigm [cf. Chang et

al. 1996] has its roots in efforts to establish analog

layout synthesis in the 1990s

 Several parts are implemented in commercial tools

(e.g. by Cadence Design Systems, Mentor Graphics,

Synopsys)

 Major components:

A. Constraint input/derivation

B. Support of layout implementation

C. Constraint compliance verification

 This presentation covers improvements in A) and C)

6

Verification Flow

Calibre PERC Framework

Constraint Derivation

patterns in netlist syntax

7

* p type current mirror

.SUBCKT cmp in out pwr

M0 in in pwr pwr P

M1 out in pwr pwr P

.ENDS

* n type differential pair

.SUBCKT dpn in1 in2 out1 out2 a gnd

M0 out1 in1 a gnd N

M1 out2 in2 a gnd N

.ENDS

…

schematic or

extracted netlist

• Constraint members are found by pattern matching

8

Constraint Types

 Alignment

Edges or center points must align

 Symmetry

Symmetry required for device seeds and context

 Matched Device Orientation

Current vectors must match

 Matched Device Parameters

All layout extracted parameters must match

 Cluster

No foreign devices may touch the hull

W, L = W, L

9

Symmetry

Layout: Infineon Technologies

10

Matched Device Orientation

Matched Orientation

Layout: Robert Bosch

Notches indicating

current direction

11

Matched Device Parameters

Layout: Infineon Technologies

Unmatched “delvto”: inconsistent well proximity

12

Cluster (Hierarchical Constraint)

Cell “bc_fastcomp”

Cell “bc_captune”

Cluster

Source: Robert Bosch

13

Constraint Verification

Calibre RVE

PERC:
Results

PERC-LDL:
Assertions

PERC-LDL:
Results

Schematic
Netlist

Calibre LVS
rule deck

Layout

Constraints

Calibre PERC

Parse constraints

Compare and
cross-reference

constraints

Select group
members

Proper
definition

?

Apply Checks

NO

YES

Constraints
rule deck

14

Constraint Verification – DRC Code
/* Execute DRC code – symmetry check example*/

Compute seed_shapes center of gravity (COG)

COG point symmetry transform seed_shapes

XOR transformed seed_shapes with seed shapes

if XOR is empty {

 if device context should be checked {

 Resize seed_shapes by halo (from csv)

 Get device context_layer from LVS deck

 foreach context_layer {

 Cookie-cut with sized seed_shapes

 COG point symmetry transform

 XOR transformed context_layer

 with original context_layer

 if XOR is empty {

 continue

 } else {

 Report context_layer symmetry error

 }

 }

 } else {

 Report seed_shapes symmetry error

 }

}

Shapes = symmetry_transform(

SeedShapes, PointOrAxis)

Result = xor(SeedShapes, Shapes)

Result empty?

SeedShapes = resize(SeedShapes, Halo)

With “cookie-cut” for each ContextLayer,

similar as above:

Result = xor(…, symmetry_transform(…))

Result empty?

No
Yes

Report(“Seedshape

error”, Result)

Report(“ContextLayer

error”, Result)

Report(“no error”)

Input: SeedShapes,

Halo, PointOrAxis, …

No
Yes

Symmetry Constraint – Result

15 Source: Robert Bosch

16

Experimental Results

Hardware: Quad-core AMD Opteron 2384, 2.7GHz

<6x

LVS

17

Summary & Conclusions

Summary:

 Successful application to industrial designs

 Identified constraint violations demonstrate the

need for hierarchical constraint verification

Outlook:

 Implementation of additional constraint checks

 Refinement/extension of rule-based constraint

derivation

