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 Functional verification is a process to ensure that a 

design implements intended functionality.

 Coverage are used as a metric

 Avoid unnecessary repetitions of verification.

 Quantify the completeness of the test suites.
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 Traditionally, coverage metrics are analyzed in a 

simulation environment.
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 Due to slow simulation speed, we can emulate the 

designs using hardware accelerator (FPGA).

 Since many signals in emulator are unobservable, 

conventional coverage analysis methods for simulator 

cannot be directly applied to emulator.
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 Several previous works proposed hardware coverage 

monitors
 Balston, Kyle, et al."Post-Silicon Code Coverage for Multiprocessor 

System-on-Chip Designs” ( IEEE Computers  2013)

 Grinwald, Raanan, et al. "User defined coverage—a tool supported 
methodology for design verification." (DAC 1998)

 Bojan, Tommy, et al."Functional Coverage Measurements and Results 
in Post-Silicon Validation of Core™2 Duo Family“ (HLDVT 2007)
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 Only parts of the design are synthesized to the 

emulator:

 Behavioral code is non–synthesizable.

 Emulator has poor observability.

 The designs are put in both simulator and emulator.
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 Coverage signals may be analyzed across a simulator 

and an emulator.

 Neither conventional coverage techniques nor 

hardware coverage monitors can be applied.
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 We propose a comprehensive methodology to analyze 

coverage in a hardware-accelerated (emulator + 

simulator) environment.

 Our methodology uses modified assertions.

 Assertions can provide rich expressions to detect coverage 

events.
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 We propose different types of coverage assertions

extending conventional assertions to analyze coverage.

 An Assertion Operation Graph (AOG) is proposed to 

represent the operations of coverage assertions.

 A set of graph-based algorithms are proposed to 

minimize the hardware and performance overheads of 

coverage assertions.
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 In hardware-accelerated environment, a coverage event 
may consist of signals in the simulator, emulator, or even 
both.

 Three types of coverage events:

 Simulated event

 Emulated event

 Hybrid event

 An assertion used to detect a coverage event is called a 
coverage assertion.

 Three types of coverage assertions:

 Simulated assertion (S_Cassert)

 Emulated assertion (E_Cassert)

 Hybrid assertion (H_Cassert)
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Simulator

 A coverage assertion for detecting the coverage event 

inside the simulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: S_Cassert S1( CPU_ID == 0 && CPU0.Core_ID == 1 );
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 Existing assertion languages can be used

 SystemVerilog Assertion (SVA)
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 A coverage assertion for detecting the coverage event 

inside the emulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: E_Cassert E1( CPU_ID == 0 && CPU0.Core_ID == 1 );
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Emulator
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 Detect the coverage event composed of both simulated 
signals and emulated signals.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: H_Cassert H1( CPU_ID == 0 && CPU0.Core_ID == 1 );

 A hybrid coverage assertion is decomposed into 

 Simulated coverage assertions 

 Emulated coverage assertions

 Auxiliary signals
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 Hardware cost

 Simulation time

 Synchronization time
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 Problem Description

 Given: A set of coverage assertions

 Goal: Reduce the hardware and performance overheads 

caused by coverage assertions
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Assertion Operation Graph 

(AOG).

Reduce the nodes on AOG.
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 : operation perform in simulator

 : operation perform in emulator

 : operation has not been assigned

 Weight of each edge: data width

24

Construction Reduction Partition

Simulated Node

Emulated Node

Unassigned Node

==== &&

Count

2

1

1

1

11

Source==1Grant==0

H_Cassert H1 ( CPU_ID == 0 && CPU0.Core_ID == 1 )

CPU0.Core_ID

10

CPU_ID

H1

1

16



NTHU-CS VLSI/CAD LAB

 An AOG is similar to a data flow graph. The 

optimization approaches on the data flow graph can be 

modified to apply on an AOG.

 e.g. Common Sub-expression Elimination
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 All unsigned nodes need to be assigned either to a 

simulator or an emulator.

 Careless assignment of those nodes can lead to high 

hardware overhead in the emulator or high total CPU 

time.

 Since synchronization time is considered as the most 

consuming part of the total CPU time, our partition 

algorithm focuses on optimizing synchronization time.

27

Construction Reduction Partition



NTHU-CS VLSI/CAD LAB

 Different assignment results could lead to different 

synchronization overhead amounts.

 Our goal is to minimize the number of data bits needed 

for communication.
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 This problem can be modeled as a constrained two-

way partitioning problem.

 We first obtain an initial solution and then modify the 

Fiduccia–Mattheyses (FM) algorithm to solve this 

problem.
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 Hardware-accelerated platform

 Simulator: ISim simulator in Xilinx ISE

 Emulator: Vertex-6 FPGA emulator

 Interface: JTAG 

 Adopted Design: 

 LCD Controller

 ADPCM Encoder and Decoder

 Deblocking Filter
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 Adopted coverage metrics:

 Cross-product coverage

 Branch coverage

 Numbers of coverage assertions:
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Design # of S_Cassert # of E_Cassert # of H_Cassert

LCD Controller 19 20 34

ADPCM Enc./Dec. 121 115 268

Deblocking Filter 170 198 381
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Design original (#LUTs) optimized (#LUTs) Reduction Ratio

LCD Controller 2665 1595 40.2%

ADPCM Enc./Dec. 9920 7552 23.8%

Deblocking Filter 48583 30730 36.7%

Average 33.6%
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 To measure coverage in a hardware-accelerated 

environment, we propose using three types of 

coverage assertions.

 In addition, an Assertion Operation Graph (AOG) and 

graph-based algorithms are proposed to optimize the 

overheads of coverage assertions.

 The experimental results showed that we can analyze 

coverage metrics across a simulator and an emulator. 

Also, we achieved an encouraging reduction of 

overheads caused by coverage analysis.
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Thank you!


