
NTHU-CS VLSI/CAD LAB

Hsuan-Ming Chou, Hong-Chang Wu, Yi-Chiao Chen,

Jean Tsao, and Shih-Chieh Chang

National Tsing Hua University, Taiwan

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

2

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

3

NTHU-CS VLSI/CAD LAB

 Functional verification is a process to ensure that a

design implements intended functionality.

 Coverage are used as a metric

 Avoid unnecessary repetitions of verification.

 Quantify the completeness of the test suites.

4

Design
Under

Verification

Testbench (Verifier)

Design
under

Verification

NTHU-CS VLSI/CAD LAB

 Traditionally, coverage metrics are analyzed in a

simulation environment.

5

Host Computer

Simulator

NTHU-CS VLSI/CAD LAB

 Due to slow simulation speed, we can emulate the

designs using hardware accelerator (FPGA).

 Since many signals in emulator are unobservable,

conventional coverage analysis methods for simulator

cannot be directly applied to emulator.

6

Emulator (FPGA)

RTL Design
In

terface

Host Computer

Signals

Simulator

NTHU-CS VLSI/CAD LAB

 Several previous works proposed hardware coverage

monitors
 Balston, Kyle, et al."Post-Silicon Code Coverage for Multiprocessor

System-on-Chip Designs” (IEEE Computers 2013)

 Grinwald, Raanan, et al. "User defined coverage—a tool supported
methodology for design verification." (DAC 1998)

 Bojan, Tommy, et al."Functional Coverage Measurements and Results
in Post-Silicon Validation of Core™2 Duo Family“ (HLDVT 2007)

7

Emulator (FPGA)

RTL DesignIn
terface

Host Computer

Signals

Simulator
Coverage
monitor

NTHU-CS VLSI/CAD LAB

 Only parts of the design are synthesized to the

emulator:

 Behavioral code is non–synthesizable.

 Emulator has poor observability.

 The designs are put in both simulator and emulator.

8

Hardware-Accelerated Environment

Emulator (FPGA)

RTL Design

In
terface

Host Computer

Simulator

Signals Signals

NTHU-CS VLSI/CAD LAB

 Coverage signals may be analyzed across a simulator

and an emulator.

 Neither conventional coverage techniques nor

hardware coverage monitors can be applied.

9

Emulator
Host Computer

Simulator

RTL
Design

RTL or
Behavioral

Design

In
terface

Signal S1 Signal S2

S1== 0 && S2 == 1?

NTHU-CS VLSI/CAD LAB

 We propose a comprehensive methodology to analyze

coverage in a hardware-accelerated (emulator +

simulator) environment.

 Our methodology uses modified assertions.

 Assertions can provide rich expressions to detect coverage

events.

10

NTHU-CS VLSI/CAD LAB

 We propose different types of coverage assertions

extending conventional assertions to analyze coverage.

 An Assertion Operation Graph (AOG) is proposed to

represent the operations of coverage assertions.

 A set of graph-based algorithms are proposed to

minimize the hardware and performance overheads of

coverage assertions.

11

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

12

NTHU-CS VLSI/CAD LAB

 In hardware-accelerated environment, a coverage event
may consist of signals in the simulator, emulator, or even
both.

 Three types of coverage events:

 Simulated event

 Emulated event

 Hybrid event

 An assertion used to detect a coverage event is called a
coverage assertion.

 Three types of coverage assertions:

 Simulated assertion (S_Cassert)

 Emulated assertion (E_Cassert)

 Hybrid assertion (H_Cassert)

13

NTHU-CS VLSI/CAD LAB

Simulator

 A coverage assertion for detecting the coverage event

inside the simulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: S_Cassert S1(CPU_ID == 0 && CPU0.Core_ID == 1);

14

Memory

Data

Addr

Cmd

Memory

Controller

Cmd

Addr

Data

Resp

CPU 0

Cmd

Addr

Data

Resp

CPU 1Attribute Values

CPU_ID (1 bit) 0,1

Core_ID (2 bits) 0,1,2,3

CPU_ID

Core_ID

Core_ID

Core 0

Core 1

Core 2
Core 3

Core 0

Core 1

Core 2
Core 3

NTHU-CS VLSI/CAD LAB

 Existing assertion languages can be used

 SystemVerilog Assertion (SVA)

15

Simulator
Testbench

integer S1;

assert(CPU_ID == 0 && CPU0.Core_ID == 1) S1++;

else;

Memory

Controller

Memory CPU 0

CPU 1CPU_ID

Core_ID

S_Cassert S1(CPU_ID == 0 && CPU0.Core_ID == 1); SVA

NTHU-CS VLSI/CAD LAB

 A coverage assertion for detecting the coverage event

inside the emulator.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: E_Cassert E1(CPU_ID == 0 && CPU0.Core_ID == 1);

16

Emulator

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

NTHU-CS VLSI/CAD LAB 17

Emulator

E_Cassert E2(CPU_ID == 0 && CPU0.Core_ID == 0);

Hardware Assertion E1

Counter

E_Cassert E1(CPU_ID == 0 && CPU0.Core_ID == 1);

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

Hardware Assertion E2

Counter

Synthesize

Scan Out

NTHU-CS VLSI/CAD LAB

 Detect the coverage event composed of both simulated
signals and emulated signals.
 Event: “Core 1 in CPU 0 successfully accesses memory”

 Assertion: H_Cassert H1(CPU_ID == 0 && CPU0.Core_ID == 1);

 A hybrid coverage assertion is decomposed into

 Simulated coverage assertions

 Emulated coverage assertions

 Auxiliary signals

18

EmulatorSimulator

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

NTHU-CS VLSI/CAD LAB 19

Emulator

H_Cassert H1(CPU_ID == 0 && CPU0.Core_ID == 1);

Hardware Assertion E1

Simulator

Testbench

S_Cassert S1(CPU_ID == 0 && E1 == 1);

Memory

Controller

Memory

CPU_ID

CPU 0

CPU 1

Core_ID

S_Cassert S1(CPU_ID == 0 && E1 == 1); E_Cassert E1(CPU0.Core_ID == 1);

Partition

E1_out

E1__out

(Different ways of implementation may lead to different overheads)

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

20

NTHU-CS VLSI/CAD LAB

 Hardware cost

 Simulation time

 Synchronization time

21

EmulatorHost Computer

Simulator

RTL

Testbench D
river

B
u

s In
terfaceRTL

S
ystem

 B
u

s

Tran
sacto

r

P
ro

xy

P
L

I

NTHU-CS VLSI/CAD LAB

 Problem Description

 Given: A set of coverage assertions

 Goal: Reduce the hardware and performance overheads

caused by coverage assertions

22

NTHU-CS VLSI/CAD LAB 23

Assertion Operation Graph

(AOG).

Reduce the nodes on AOG.

Partition the AOG into two

sub-graph.

Construction

Reduction

Partition

S_CassertS_CassertS_CassertE_CassertH_Cassert

S_CassertS_CassertE_Cassert
E_Cassert

S_CassertS_Cassert
S_Cassert

NTHU-CS VLSI/CAD LAB

 : operation perform in simulator

 : operation perform in emulator

 : operation has not been assigned

 Weight of each edge: data width

24

Construction Reduction Partition

Simulated Node

Emulated Node

Unassigned Node

==== &&

Count

2

1

1

1

11

Source==1Grant==0

H_Cassert H1 (CPU_ID == 0 && CPU0.Core_ID == 1)

CPU0.Core_ID

10

CPU_ID

H1

1

16

NTHU-CS VLSI/CAD LAB

 An AOG is similar to a data flow graph. The

optimization approaches on the data flow graph can be

modified to apply on an AOG.

 e.g. Common Sub-expression Elimination

25

Construction Reduction Partition

==== &&

Count

2
1

1

11

CPU0.Core_ID

1

0 H1

1

16

H2 Count
16

&& ====

READ

1 1

2

2

1

2

2

2

CPU0.Core_ID == 1

cmdType

CPU_ID

H_Cassert H1 (CPU_ID == 0 && CPU0.Core_ID == 1)

H_Cassert H2 (cmdType == READ && CPU0.Core_ID == 1)

NTHU-CS VLSI/CAD LAB

 An AOG is similar to a data flow graph. The

optimization approaches on the data flow graph can be

modified to apply on an AOG.

 e.g. Common Sub-expression Elimination

26

Construction Reduction Partition

== &&

Count

2
1

1

1
1

CPU0.Core_ID

1

0 H1

1

16

H2 Count
16

&&

==

==

READ

1

2

2

1

2

CPU0.Core_ID == 1

cmdType

CPU_ID

H_Cassert H1 (CPU_ID == 0 && CPU0.Core_ID == 1)

H_Cassert H2 (cmdType == READ && CPU0.Core_ID == 1)

NTHU-CS VLSI/CAD LAB

 All unsigned nodes need to be assigned either to a

simulator or an emulator.

 Careless assignment of those nodes can lead to high

hardware overhead in the emulator or high total CPU

time.

 Since synchronization time is considered as the most

consuming part of the total CPU time, our partition

algorithm focuses on optimizing synchronization time.

27

Construction Reduction Partition

NTHU-CS VLSI/CAD LAB

 Different assignment results could lead to different

synchronization overhead amounts.

 Our goal is to minimize the number of data bits needed

for communication.

28

Construction Reduction Partition

NTHU-CS VLSI/CAD LAB

 This problem can be modeled as a constrained two-

way partitioning problem.

 We first obtain an initial solution and then modify the

Fiduccia–Mattheyses (FM) algorithm to solve this

problem.

29

Construction Reduction Partition

== &&

Count

2
1

1

1

CPU0.Core_ID

1

0 H1

1

16

H2 Count
16

&&

==

==

READ

1

1

2

2

1

2
cmdType

CPU_ID

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

30

NTHU-CS VLSI/CAD LAB

 Hardware-accelerated platform

 Simulator: ISim simulator in Xilinx ISE

 Emulator: Vertex-6 FPGA emulator

 Interface: JTAG

 Adopted Design:

 LCD Controller

 ADPCM Encoder and Decoder

 Deblocking Filter

31

http://opencores.org/

NTHU-CS VLSI/CAD LAB

 Adopted coverage metrics:

 Cross-product coverage

 Branch coverage

 Numbers of coverage assertions:

32

Design # of S_Cassert # of E_Cassert # of H_Cassert

LCD Controller 19 20 34

ADPCM Enc./Dec. 121 115 268

Deblocking Filter 170 198 381

NTHU-CS VLSI/CAD LAB 33

Design original (#LUTs) optimized (#LUTs) Reduction Ratio

LCD Controller 2665 1595 40.2%

ADPCM Enc./Dec. 9920 7552 23.8%

Deblocking Filter 48583 30730 36.7%

Average 33.6%

NTHU-CS VLSI/CAD LAB

 Introduction

 Coverage Analysis In a Hardware-Accelerated

Environment

 Optimization of Coverage Assertions

 Experimental Results

 Conclusions

34

NTHU-CS VLSI/CAD LAB

 To measure coverage in a hardware-accelerated

environment, we propose using three types of

coverage assertions.

 In addition, an Assertion Operation Graph (AOG) and

graph-based algorithms are proposed to optimize the

overheads of coverage assertions.

 The experimental results showed that we can analyze

coverage metrics across a simulator and an emulator.

Also, we achieved an encouraging reduction of

overheads caused by coverage analysis.

35

NTHU-CS VLSI/CAD LAB 36

Thank you!

