
Composing Real-Time Applications from
Communicating Black-Box Components

Martin Becker*, Alejandro Masrur+, Samarjit Chakraborty*

*TU Munich, Institute for Real-Time Computer Systems (RCS)
+TU Chemnitz, Software Technology for Embedded Systems (STES)

Tokyo, 2014 January 22nd

Outline

1 Introduction

2 Concept "Containers"

3 Reference Implementation for C

4 Results

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 2 of 17

Motivation
real-time systems, consisting of individually developed
components

common in industrial setups: different suppliers to be
integrated, black boxes, not known to each other
different modeling paradigms and tools in each domain
we are not trying to unify all of them

free developer from the burden of integration:
decide on execution schedule, manage communication
(buffering, transport, different, interfaces, data
consistency), ensure completeness and correctness
(determinism, reactivity), ...

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 3 of 17

Motivation (2)

How could this work be interesting for you?

theory: proposing and analyzing a simple, deterministic
multi-rate model of communication

software development: offering shortcut to
synchronizing components running at different rates

hardware development: same here

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 4 of 17

Solution: Timed Containers

Wrapper

RATE=10Hz

REQUIRE(B.y)

PROVIDE(A.x)

Wrapper

RATE=15Hz

REQUIRE(A.x)

PROVIDE(B.y)

Standard C

Compiler & Linker
our

library

black box

component

B

y

black box

component

A

x

black box

component

A

black box

component

B
synchronized

buffers

10Hz 15Hz

deterministic composite program

Task Dispatcher

components are
wrapped into
containers

containers
automatically solve
communication and
execution schedule

user gets guarantees

math. proof of
correctness

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 5 of 17

Solution: Timed Containers

Wrapper

RATE=10Hz

REQUIRE(B.y)

PROVIDE(A.x)

Wrapper

RATE=15Hz

REQUIRE(A.x)

PROVIDE(B.y)

Standard C

Compiler & Linker
our

library

black box

component

B

y

black box

component

A

x

black box

component

A

black box

component

B
synchronized

buffers

10Hz 15Hz

deterministic composite program

Task Dispatcher

components are
wrapped into
containers

containers
automatically solve
communication and
execution schedule

user gets guarantees

math. proof of
correctness

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 5 of 17

Solution: User’s View

1 declare each black-box (BB) component
1 identifier
2 interface (inputs, outputs)
3 execution rate
4 (delay constraints)

2 instantiate BB (and connect to I/O ports)

3 compile+link as usual ⇒ executable

Result: well-timed system of semantically correct
communicating black box components

XComposing RT system on a high-level view. No need to care
for scheduling or communication mechanisms.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 6 of 17

What is a black box (BB) exactly?

Here:
known interfaces

I/O direction, types

bounded worst-case execution time
i.e., no indefinitely blocking calls, no infinite loops

time-discrete, periodic computation
in time steps Ti

fixed binding of logical to physical time (...algorithms...)
each BB invocation: time= time+Ti

Nothing else.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 7 of 17

Execution Semantics

similarly to physical components: components run
logically in parallel to each other

typical for RT systems: components run periodically
underlying execution platform is abstracted out

components could run on a multi-core platform with OS
or on a bare-metal single core controller

In any case: periodic and parallel.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 8 of 17

Communication Semantics

components have signals and events

‘‘freshest value’’ semantics
logically non-zero communication delay between
components

guaranteed bounds (min,max)
transport mechanism, synchronization etc. abstracted out

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 9 of 17

Verification of Semantics

If verification is successful, then the implementation
(hardware+software) behaves the same as the abstract model.

things to prove: parallel, periodic, freshest value,
bounded delays, deterministic

we need platform information only now (processor,
caches, OS, ...)

obtain (wort-case) execution time of each component
show that platform’s scheduling leads to (worst-case)
response times short enough to preserve semantics:

components produce signals/events faster thanmin-bound
components finish execution before next execution starts

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 10 of 17

Reference Implementation for C

C library, works with any std. C89 compiler

Component integration takes place during compilation
and linking process.

Correctness and Completness: Any non-deterministic
use is prevented (no/multiple drivers, non-matching data
type or unsynchronized signals/events).

Further:

small memory footprint,
no dynamic memory allocation,
support for multi-threading,
provision of signal/event trace logging.

Intuitive usage for any C developer.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 11 of 17

Example: Loopback Application

// file c0.c

#define CONT_NAME C0

CONT_PRESCALER(3);

ANNOUNCE_EVENT(echo_1);

REQUIRE_EVENT(echo_2);

void CONT_READIN_ME () {

UPDATE_EVENT(echo_2);

}

void CONT_PROCESS_ME () {

SET_EVENT(echo_1);

}

//

// file c1.c

#define CONT_NAME C1

CONT_PRESCALER(1);

ANNOUNCE_EVENT(echo_2);

REQUIRE_EVENT(echo_1);

void CONT_READIN_ME () {

UPDATE_EVENT(echo_1);

}

void CONT_PROCESS_ME () {

if (GET_EVENT(echo_1))

SET_EVENT(echo_2);

}

with 30Hz timer:

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 12 of 17

Example: Loopback Application

// file c0.c

#define CONT_NAME C0

CONT_PRESCALER(3);

ANNOUNCE_EVENT(echo_1);

REQUIRE_EVENT(echo_2);

void CONT_READIN_ME () {

UPDATE_EVENT(echo_2);

}

void CONT_PROCESS_ME () {

SET_EVENT(echo_1);

}

//

// file c1.c

#define CONT_NAME C1

CONT_PRESCALER(1);

ANNOUNCE_EVENT(echo_2);

REQUIRE_EVENT(echo_1);

void CONT_READIN_ME () {

UPDATE_EVENT(echo_1);

}

void CONT_PROCESS_ME () {

if (GET_EVENT(echo_1))

SET_EVENT(echo_2);

}

with 30Hz timer:

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 12 of 17

Performance Measurements (1)

10x rate
change

...

→ 10x
processing
load

→ same
timing
overhead

(relative overhead
changes, of course)

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 13 of 17

Performance Measurements (1)

10x rate
change

→ 10x
processing
load

...

→ same
timing
overhead

(relative overhead
changes, of course)

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 13 of 17

Performance Measurements (1)

10x rate
change

→ 10x
processing
load

→ same
timing
overhead

(relative overhead
changes, of course)

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 13 of 17

Performance Measurements (2)

2 4 6 8 10
0

2,000

4,000

6,000

8,000

number of containers

m
em

or
y
ov
er
h
ea
d
[B
y
te
s]

10 signals, max. fan out

per container 330x+ 122
sweep

memory
demand:
linear with num.
containers and
num. signals

(All plots show
unoptimized code)

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 14 of 17

Conclusions

enable component-based systems with focus on
components development instead of integration

works with black boxes

execution platform abstracted away

formal verification of implementation semantics ⇒
amenable for safety-critical systems
developed a C library as reference implementation

is easy to use
does all the component integration for you
ensures consistency and correctness
can be ported to other languages, e.g., VHDL

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 15 of 17

Future Work

Support multi-threading/multi-core X

Reduce minimum delay ...ongoing

Imposing interface requirements (e.g., max. delay)
...ongoing

Synthesis to Hardware/VHDL...planned

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 16 of 17

The End

Thank you

Source code available at
https://github.com/mbeckersys/libcontainers

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 17 of 17

https://github.com/mbeckersys/libcontainers

	Introduction
	Concept "Containers"
	Reference Implementation for C
	Results

