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Motivation

= real-time systems, consisting of individually developed
components

m common in industrial setups: different suppliers to be
integrated, black boxes, not known to each other

= different modeling paradigms and tools in each domain

= we are not trying to unify all of them

= free developer from the burden of integration:

m decide on execution schedule, manage communication
(buffering, transport, different, interfaces, data
consistency), ensure completeness and correctness
(determinism, reactivity), ...
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Motivation (2)

How could this work be interesting for you?

= theory: proposing and analyzing a simple, deterministic
multi-rate model of communication

= software development: offering shortcut to
synchronizing components running at different rates

= hardware development: same here
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Solution: Timed Containers
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Solution: Timed Containers
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Solution: User’s View

declare each black-box (BB) component

identifier

interface (inputs, outputs)
execution rate

(delay constraints)

instantiate BB (and connect to I/O ports)
compile+link as usual = executable

Result: well-timed system of semantically correct
communicating black box components

v'Composing RT system on a high-level view. No need to care
for scheduling or communication mechanisms.
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What is a black box (BB) exactly?

Here:

= known interfaces
m |/O direction, types

m bounded worst-case execution time
m i.e., no indefinitely blocking calls, no infinite loops

= time-discrete, periodic computation
m intime steps T;

= fixed binding of logical to physical time (...algorithms...)
m each BB invocation: time = time + T;

Nothing else.
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Execution Semantics

= similarly to physical components: components run
logically in parallel to each other

m typical for RT systems: components run periodically

= underlying execution platform is abstracted out

= components could run on a multi-core platform with OS
= Or on a bare-metal single core controller

In any case: periodic and parallel.
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Communication Semantics

m components have signals and events
m ‘‘freshest value’’ semantics
m logically non-zero communication delay between
components
= guaranteed bounds (min,max)
m transport mechanism, synchronization etc. abstracted out

Legend: T task release - - generate signal

I task execution - - signal flow
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Verification of Semantics

If verification is successful, then the implementation
(hardware+software) behaves the same as the abstract model.

= things to prove: parallel, periodic, freshest value,
bounded delays, deterministic

m we need platform information only now (processor,
caches, OS, ..)
m obtain (wort-case) execution time of each component

= show that platform’s scheduling leads to (worst-case)
response times short enough to preserve semantics:
= components produce signals/events faster than min-bound
m components finish execution before next execution starts
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Reference Implementation for C

C library, works with any std. C89 compiler

m Component integration takes place during compilation
and linking process.

s Correctness and Completness: Any non-deterministic
use is prevented (no/multiple drivers, non-matching data
type or unsynchronized signals/events).

m Further:
= small memory footprint,
= no dynamic memory allocation,
u
u

support for multi-threading,
provision of signal/event trace logging.

Intuitive usage for any C developer.
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Example: Loopback Application

// file c0O0.c

#define CONT_NAME CO
CONT_PRESCALER(3);
ANNOUNCE_EVENT (echo_1);
REQUIRE_EVENT (echo_2);

void CONT_READIN_ME() {
UPDATE_EVENT (echo_2);

¥

void CONT_PROCESS_ME() {
SET_EVENT (echo_1);

¥

//

// file cl.c

#define CONT_NAME C1
CONT_PRESCALER(1);
ANNOUNCE_EVENT (echo_2);
REQUIRE_EVENT (echo_1);

void CONT_READIN_ME() {
UPDATE_EVENT (echo_1);
¥
void CONT_PROCESS_ME() {
if (GET_EVENT(echo_1))
SET_EVENT (echo_2);

with 30 Hz timer:
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Example: Loopback Application

// file c0O0.c

#define CONT_NAME CO
CONT_PRESCALER(3);
ANNOUNCE_EVENT (echo_1);
REQUIRE_EVENT (echo_2);

_READIN_ME () {
UPDATE_EVENT (echo_2);

// file cl.c

#define CONT_NAME C1
CONT_PRESCALER(1);
ANNOUNCE_EVENT (echo_2);
REQUIRE_EVENT (echo_1);

void CONT_READIN_ME() {
UPDATE_EVENT (echlo_1);
¥
void CONT_PROCESS_ME() {
if (GET_EVENT (echo_1))
SET_EVENT (echo/2);
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Performance Measurements (2)
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Conclusions

= enable component-based systems with focus on
components development instead of integration

= works with black boxes
execution platform abstracted away

m formal verification of implementation semantics =

amenable for safety-critical systems

developed a C library as reference implementation
= iS easy to use

does all the component integration for you

ensures consistency and correctness

can be ported to other languages, e.g., VHDL
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Future Work

= Support multi-threading/multi-core v/
m Reduce minimum delay ...ongoing

m Imposing interface requirements (e.g., max. delay)
...ongoing

= Synthesis to Hardware/VHDL...planned
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The End

Thank you

Source code available at
https://github.com/mbeckersys/libcontainers
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