Composing Real-Time Applications from

Communicating Black-Box Components

Martin Becker', Alejandro Masrur*, Samarijit Chakraborty”

"“TU Munich, Institute for Real-Time Computer Systems (RCS)
*TU Chemnitz, Software Technology for Embedded Systems (STES)

Tokyo, 2014 January 22nd

©"'"'N Realzeit-Computersysteme Technische Universitat Miinchen

Outline

Introduction

Concept "Containers"

Reference Implementation for C

Results

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 2 of 17

Motivation

= real-time systems, consisting of individually developed
components

m common in industrial setups: different suppliers to be
integrated, black boxes, not known to each other

= different modeling paradigms and tools in each domain

= we are not trying to unify all of them

= free developer from the burden of integration:

m decide on execution schedule, manage communication
(buffering, transport, different, interfaces, data
consistency), ensure completeness and correctness
(determinism, reactivity), ...

X
black box O

component
A

z
P black box
component
. O
black box O y
component
C

y [B I |

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 3 of 17

Motivation (2)

How could this work be interesting for you?

= theory: proposing and analyzing a simple, deterministic
multi-rate model of communication

= software development: offering shortcut to
synchronizing components running at different rates

= hardware development: same here

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 4 of 17

Solution: Timed Containers

m components are
wrapped into
containers

black box
component

black box
component

Wrapper

RATE=10Hz
REQUIRE(B.y)
PROVIDE(A.x)

-L> Standard C 4—'

Compiler & Linker «mmmm— 7"

Wrapper
RATE=15Hz

REQUIRE(A.x)
PROVIDE(B.y)

[——
[——

[P —

library

| 10HZ{B Task Dispatcher {Z\:}HHZ |

black box black box

component component
A B

gsmmEmmEE .-
mEassssssssnnnnn?

LT EEEEE L EAd

pEssspsssssssssssmnn
deterministic composite program

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 5 of 17

Solution: Timed Containers

m components are
wrapped into
containers

black box
component

black box
component

m containers
automatically solve
communication and

LY seneee ed [1 execution schedule
Compiler & Linker «mmmm— 7"

Wrapper
RATE=10Hz

REQUIRE(B.y)
PROVIDE(A.X)

Wrapper
RATE=15Hz

REQUIRE(A.x)
PROVIDE(B.y)

[——
[——

library m user gets guarantees

m math. proof of
correctness

I
black box black box
component component
A) B

mEassssssssnnnnn?

.

deterministic composite program

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 5 of 17

Solution: User’s View

declare each black-box (BB) component

identifier

interface (inputs, outputs)
execution rate

(delay constraints)

instantiate BB (and connect to I/O ports)
compile+link as usual = executable

Result: well-timed system of semantically correct
communicating black box components

v'Composing RT system on a high-level view. No need to care
for scheduling or communication mechanisms.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 6 of 17

What is a black box (BB) exactly?

Here:

= known interfaces
m |/O direction, types

m bounded worst-case execution time
m i.e., no indefinitely blocking calls, no infinite loops

= time-discrete, periodic computation
m intime steps T;

= fixed binding of logical to physical time (...algorithms...)
m each BB invocation: time = time + T;

Nothing else.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 7 of 17

Execution Semantics

= similarly to physical components: components run
logically in parallel to each other

m typical for RT systems: components run periodically

= underlying execution platform is abstracted out

= components could run on a multi-core platform with OS
= Or on a bare-metal single core controller

In any case: periodic and parallel.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 8 of 17

Communication Semantics

m components have signals and events
m ‘‘freshest value’’ semantics
m logically non-zero communication delay between
components
= guaranteed bounds (min,max)
m transport mechanism, synchronization etc. abstracted out

Legend: T task release - - generate signal

I task execution - - signal flow

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 9 of 17

Verification of Semantics

If verification is successful, then the implementation
(hardware+software) behaves the same as the abstract model.

= things to prove: parallel, periodic, freshest value,
bounded delays, deterministic

m we need platform information only now (processor,
caches, OS, ..)
m obtain (wort-case) execution time of each component

= show that platform’s scheduling leads to (worst-case)
response times short enough to preserve semantics:
= components produce signals/events faster than min-bound
m components finish execution before next execution starts

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 10 of 17

Reference Implementation for C

C library, works with any std. C89 compiler

m Component integration takes place during compilation
and linking process.

s Correctness and Completness: Any non-deterministic
use is prevented (no/multiple drivers, non-matching data
type or unsynchronized signals/events).

m Further:
= small memory footprint,
= no dynamic memory allocation,
u
u

support for multi-threading,
provision of signal/event trace logging.

Intuitive usage for any C developer.

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 11 of 17

Example: Loopback Application

// file c0O0.c

#define CONT_NAME CO
CONT_PRESCALER(3);
ANNOUNCE_EVENT (echo_1);
REQUIRE_EVENT (echo_2);

void CONT_READIN_ME() {
UPDATE_EVENT (echo_2);

¥

void CONT_PROCESS_ME() {
SET_EVENT (echo_1);

¥

//

// file cl.c

#define CONT_NAME C1
CONT_PRESCALER(1);
ANNOUNCE_EVENT (echo_2);
REQUIRE_EVENT (echo_1);

void CONT_READIN_ME() {
UPDATE_EVENT (echo_1);
¥
void CONT_PROCESS_ME() {
if (GET_EVENT(echo_1))
SET_EVENT (echo_2);

with 30 Hz timer:

2015-01-22

Becker: Composing Real-Time Apps from Black-Box Components

page 12 of 17

Example: Loopback Application

// file c0O0.c

#define CONT_NAME CO
CONT_PRESCALER(3);
ANNOUNCE_EVENT (echo_1);
REQUIRE_EVENT (echo_2);

_READIN_ME () {
UPDATE_EVENT (echo_2);

// file cl.c

#define CONT_NAME C1
CONT_PRESCALER(1);
ANNOUNCE_EVENT (echo_2);
REQUIRE_EVENT (echo_1);

void CONT_READIN_ME() {
UPDATE_EVENT (echlo_1);
¥
void CONT_PROCESS_ME() {
if (GET_EVENT (echo_1))
SET_EVENT (echo/2);

2015-01-22

Becker: Composing Real-Time Apps from Black-Box Components

page 12 of 17

instructions in 10 seconds

Performance Measurements (1)

1.2

0.8

0.6

0.4

0.2

2015-01-22

-108

In 1/0 Mapper

Il Container Overhead

II Sensor Pre-processing
D[] Robot Behavior [ll] Synchronization

reduced sync.
overhead ~7 %

(10%)

B 7
| (33%) é

(16%)

low-rate behavior

(37%)

(34%)

(15%)

(6%)

(8%)

high-rate behavior

Becker: Composing Real-Time Apps from Black-Box Components

10x rate
change

page 13 of 17

instructions in 10 seconds

Performance Measurements (1)

-10°
!

19| II 1/0O Mapper II Sensor Pre-processing (37‘)0) |

’ D I Robot Behavior [l [Synchronization (340 (‘)

NI@ Container Overhead
1 .
reduced sync.
B overhead ~7 % 1
0.8 - —
| (40%))
7
0.6 7 1
| (33%) j (15%) i
(16%) (8%) 4
low-rate behavior high-rate behavior

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components

10x rate
change

— 10x
processing
load

page 13 of 17

instructions in 10 seconds

Performance Measurements (1)

1.2

0.8

0.6

2015-01-22

-108

I In 1/0O Mapper

DD Robot Behavior

NI@ Container Overhead

II Sensor Pre-processing

[0 Synchronization

reduced sync.
overhead ~7 %

(40%)

(33%) 7,

low-rate behavior

(16%)

(37%)

(34%)

(15%)

(8%) |

high-rate behavior

Becker: Composing Real-Time Apps from Black-Box Components

10x rate
change

— 10x
processing
load

— same
timing
overhead

(relative overhead
changes, of course)

page 13 of 17

Performance Measurements (2)

I I I
8.000 | | —— 10 signals, max. fan out N memory
— ’ —=— per container 330z + 122 demand:
8 - - - sweep \ : .
£ | linear with num.
£2. 6,000 |- N containers and
E \ num. signals
g 4,000 |- 5
(All plots show
? '/ unoptimized code)
£ 2,000 |
=
0 | | | |

2 4 6 8 10

number of containers

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 14 of 17

Conclusions

= enable component-based systems with focus on
components development instead of integration

= works with black boxes
execution platform abstracted away

m formal verification of implementation semantics =

amenable for safety-critical systems

developed a C library as reference implementation
= iS easy to use

does all the component integration for you

ensures consistency and correctness

can be ported to other languages, e.g., VHDL

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 15 of 17

Future Work

= Support multi-threading/multi-core v/
m Reduce minimum delay ...ongoing

m Imposing interface requirements (e.g., max. delay)
...ongoing

= Synthesis to Hardware/VHDL...planned

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 16 of 17

The End

Thank you

Source code available at
https://github.com/mbeckersys/libcontainers

2015-01-22 Becker: Composing Real-Time Apps from Black-Box Components page 17 of 17

https://github.com/mbeckersys/libcontainers

	Introduction
	Concept "Containers"
	Reference Implementation for C
	Results

