
Layout Decomposition for

Spacer-is-Metal (SIM) Self-Aligned

Double Patterning

1 Department of Electrical Engineering, National Taiwan

University of Science and Technology
2 Department of Electrical Engineering, National Taiwan

University

1

Shao-Yun Fang1, Yi-Shu Tai2, and Yao-Wen Chang2

Jan 22, 2015

http://www.ntu.edu.tw/chinese/PageB.php
http://www.ntu.edu.tw/chinese/PageB.php

Outline

2

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Outline

3

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

LELE Double Patterning Lithography

 Litho-etch-litho-etch (LELE) double patterning lithography

(DPL) has been widely known and used in industry

4

1st exposure-etching process

2nd exposure-etching process

Photoresist

Hard mask

Target film

Substrate

Self-Aligned Double Patterning (SADP)

 Self-aligned double patterning (SADP) becomes more

popular due to the better overlay and critical dimension

(CD) controllability

 Processes in SADP

 Positive: spacers define lines

 Negative: spacers define trenches

5

Core pattern Spacer

Substrate

Target film Positive tone process

Negative tone process

Layout Decomposition in SADP

 Layout decomposition (LD) in SADP

 Spacer-is-metal (SIM): spacers define patterns

 Spacer-is-dielectric (SID): spacers define spacings among

patterns

6

Target pattern

Core pattern

Spacer

Trim/cut pattern

Trim pattern

Cut pattern

SIM-type

LD

SID-type

LD

Outline

7

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD

8

A

B
30

40

Core pattern Spacer

Trim patternAssist core pattern

Target layout

SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD

 SIM-type 2D layout decomposition

 Patterns are formed by spacers

 May have better decomposability since non-uniform spacings can

be controlled by core patterns

9

A

B
30

40

Core pattern

Spacer

Cut pattern

Target layout

Cut Pattern Determination

 Cut patterns are used to remove spacers not covering

layout patterns

 A cut pattern can be immediately determined as a core

pattern is chosen

10

Target

Core

Spacer

Cut

Previous Studies

 SID-type layout decomposition

 Ban et al., “Flexible 2D layout decomposition framework for

spacer-type double patterning lithography,” in DAC-2011

 Zhang et al., “Self-aligned double patterning decomposition for

overlay minimization and hot spot detection,” in DAC-2011

 Xiao et al., “A polynomial time exact algorithm for self-aligned

double patterning layout decomposition,” in ISPD-2012

 SIM-type layout decomposition

 Zhang et al., “Effective decomposition algorithm for self-aligned

double patterning lithography,” in SPIE-2011

 A SAT-based algorithm (NP-complete)

 Not applicable to indecomposable designs

11

SIM-Type Layout Decomposition

 Terminologies

 A core conflict: a pair of core patterns with distance < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 A cut conflict: a pair of cut patterns with distance < 𝑑𝑖𝑠𝑐𝑢𝑡

 Problem formulation

 Given: a photomask layout

 Objective: a layout decomposition result with minimized #conflicts

 A layout decomposition result = a core mask + a cut mask

 #conflicts = #core conflicts + #cut conflicts

 Constraint: the produced layout is exactly the same as the

original one

12

Outline

13

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

Outline

14

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

Core Candidate Identification

 Core candidates are identified for spacer deposition

 Fragment polygons into rectangles (features)

 Identify two core candidates for each feature

15

A D

B C
A2

A1 A D

B CB1 B2

F
F2

F1

A D

F

B C

Target pattern Core candidate

Core-Feature Matching Graph Construction

 Construct a core-feature matching graph 𝐺𝑀

 A feature vertex 𝑢: a feature

 A core vertex 𝑣: a core candidate

 An edge (𝑢, 𝑣): 𝑣 is a core candidate of 𝑢

 Merge equivalent vertices to reduce graph complexity

16

F1 F2

F

A1 A2 B1

A B C D

B2 C1 C2 D1 D2

Core vertex Feature vertex

A D

B C
A2

A1

A D

B CB1 B2

F
F2

F1

F1 F2

F

A1 A2 B1

A B C D

B2C1 C2 D1 D2

Merge equivalent vertices

A D

B CC2C1

Conflict Graph Construction

 Inspect conflicts among core candidates

 The distance between two core candidates < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 The two core candidates cannot be merged

 Construct a conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflicting

17

F
F2

F1

A1 A D

B C
B2

C1

D2

F1 F2

A1 B1 B2C1 C2 D1

B1

A2

C2

D1
A2 D2

Conflict Graph Construction (cont’d)

 Inspect conflicts among cut patterns

 The distance between two cut patterns < 𝑑𝑖𝑠𝑐𝑢𝑡

 The two cut patterns cannot be merged

 Update the conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflict or two corresponding cut

patterns are conflict

18

A1 A D

B C
B2

C1

A1 A D

B C
B2

C1

F1 F2

A1 B1 B2C1 C2 D1

A2 D2

Graph Formulation

 Construct the combination graph 𝐺 of a core-feature

matching graph 𝐺𝑀 and a conflict graph 𝐺𝐶

 Problem Constrained Set Covering Problem (SCP)

 Given: a combination graph

 Objective: a set cover ℂ with the minimized #conflicts

 A set cover ℂ : a set of core vertices

 #conflicts: #conflict edges within ℂ

 Constraint: all feature vertices are covered by ℂ

19

FA B C D

Feature vertex

Covering edge

Conflict edge

Core vertex

A1 A2 F1 F2B2C1 D2D1B1 C2 Set cover ℂ

Outline

20

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

Initial Solution Derivation

 Greedy principle: select the most cost-effective core

vertex into the set cover ℂ at a time

 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖): #uncovered feature vertices covered by 𝑣𝑖

 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖): increased #conflict edges due to the addition of 𝑣𝑖

into ℂ

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) − 𝛼 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖)

 Algorithm Greedy Algorithm for Constrained SCP

Step 1 Compute 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑖) for each core vertex 𝑣𝑖

Step 2 Add 𝑣𝑗 with the largest 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑗) into ℂ

Step 3 Update 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) and 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖) for each 𝑣𝑖 ∈ ℂ

Repeat Steps 1 to 3 until all feature vertices are covered

21

Example of the Greedy Algorithm

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑣𝑖 − 0.5 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣𝑖

22

v1 v2 v3 v4 v5

u1 u2 u3 u4

1 2 2 2 1

v1 v2 v3 v4 v5

u1 u2 u3 u4

v1 v2 v3 v4 v5

u1 u2 u3 u4

0.5 0.5 0.5 0.5

v1 v2 v3 v4 v5

u1 u2 u3 u4

v1 v2 v3 v4 v5

u1 u2 u3 u4

-1 0.5 0.5

v1 v2 v3 v4 v5

u1 u2 u3 u4

Feature vertex

Covering edge

Conflict edge

Core vertex
Set cover ℂ

Outline

23

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

F-M Heuristic

 The solution refinement algorithm is based on the F-M

partitioning heuristic [Fiduccia and Mattheyses, DAC’82]

 Objective: minimize #cut edges in a partition

 In each step, move a vertex with the largest gain and lock it

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑒𝑑𝑔𝑒_𝑐𝑢𝑡 𝑣

 In each iteration, choose the partition with the maximum partial

sum of gains as the refinement solution

24

A

C

B

D

1 1

11

A

C

B

D

-1

11

Partial sum = 1

D

C

B

A

Partial sum = 2

Free vertex

Locked vertex

Vertex gain

Partition-Based Solution Refinement

 Solution refinement for the constrained SCP

 Initial partition: the initial solution from the greedy algorithm

 Objective: minimize #conflicts in the set cover ℂ of a partition

 Constraint: the refinement solution (a partition with the maximum

partial sum) must be legal in each iteration

 A legal partition: all feature vertices are covered by the

corresponding set cover ℂ

25

u1 u2 u3 u4

v1

v3

v4

v2

v5

 ℂ
Set cover ℂ

v1 v2 v3 v4 v5

u1 u2 u3 u4

Feature vertex

Core vertex

Locked core vertex

Covering edge

Conflict edge

Initial partition

Partition-Based Solution Refinement (cont’d)

 Solution legalization by gain setting

 Vertex gain: 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣)

 Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣): variation of #conflicts due to the movement of 𝑣

 Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣): variation of #uncovered feature vertices

 Theorem By setting 𝛽 > 2𝑑, the partition-based algorithm can

always find a legal refinement solution in each iteration

 𝑑: maximum #conflict edges incident to a core vertex

26

u1 u2 u3 u4

v1

v3

v4

v2

v5

 ℂ
Set cover ℂ

u1 u2 u3 u4

v1

v3

v4

v2

v5

An illegal partition

Feature vertex

Core vertex

Locked core vertex

Covering edge

Conflict edge

Example of Solution Refinement

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟 𝑣
 𝛽 = 2𝑑 + 1 = 9

27

Feature vertex

Covering edge

Conflict edge

Core vertex

Locked core vertex

-7

u1 u2 u3 u4

v1

v3

v4

v2

v5

 ℂ
Set cover ℂ

-8

-8

-2

-2

u1 u2 u3 u4

v1

v3

v4

v2

v5

Partial sum = -2

u1 u2 u3 u4

v1

v3

v4

v2

v5

Partial sum = +1

u1 u2 u3 u4

v1

v3

v4

v2

v5

Partial sum = +2

u1 u2 u3 u4

v1

v3

v4

v2

v5

-8

+2

-2
+3

u1 u2 u3 u4

v1

v3

v4

v2

v5 -18

+1

-1

Outline

28

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Experimental Setup

 Platform

 C++ programming language

 2.13 GHz Linux workstation with 48 GB memory

 Benchmark

 ISCAS-89 circuits

 Routing wires in Metal-2, 2D gridless layouts, uniform wire width

 Indecomposable layouts (previous study [Zhang et al., SPIE’11] is

not applicable)

 Comparison

 A random algorithm for the constrained SCP was implemented

 Core vertices covering some uncovered feature vertices are

randomly and sequentially selected

29

Experimental Results and Conclusion

 The greedy heuristic generates 7X fewer conflicts than the random

method

 The partition-based solution refinement further reduce 84.7% #conflicts

 Our algorithms can effectively derive an SIM-type layout decomposition

solution with desired numbers of core conflicts.

30

Layout Decomposition Result

31

 A local view of the layout decomposition result of s5378

Target pattern

Core pattern

Cut pattern

Outline

32

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Conclusions

 This paper proposes an efficient graph-based SIM-type

layout decomposition algorithm for SADP

 The decomposition problem is transformed into a

constrained SCP and solved with efficient heuristic

algorithms

 Experimental results have shown that our algorithms can

effectively derive good SIM-type layout decomposition

solutions

33

