
Layout Decomposition for

Spacer-is-Metal (SIM) Self-Aligned

Double Patterning

1 Department of Electrical Engineering, National Taiwan

University of Science and Technology
2 Department of Electrical Engineering, National Taiwan

University

1

Shao-Yun Fang1, Yi-Shu Tai2, and Yao-Wen Chang2

Jan 22, 2015

http://www.ntu.edu.tw/chinese/PageB.php
http://www.ntu.edu.tw/chinese/PageB.php

Outline

2

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Outline

3

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

LELE Double Patterning Lithography

 Litho-etch-litho-etch (LELE) double patterning lithography

(DPL) has been widely known and used in industry

4

1st exposure-etching process

2nd exposure-etching process

Photoresist

Hard mask

Target film

Substrate

Self-Aligned Double Patterning (SADP)

 Self-aligned double patterning (SADP) becomes more

popular due to the better overlay and critical dimension

(CD) controllability

 Processes in SADP

 Positive: spacers define lines

 Negative: spacers define trenches

5

Core pattern Spacer

Substrate

Target film Positive tone process

Negative tone process

Layout Decomposition in SADP

 Layout decomposition (LD) in SADP

 Spacer-is-metal (SIM): spacers define patterns

 Spacer-is-dielectric (SID): spacers define spacings among

patterns

6

Target pattern

Core pattern

Spacer

Trim/cut pattern

Trim pattern

Cut pattern

SIM-type

LD

SID-type

LD

Outline

7

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD

8

A

B
30

40

Core pattern Spacer

Trim patternAssist core pattern

Target layout

SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD

 SIM-type 2D layout decomposition

 Patterns are formed by spacers

 May have better decomposability since non-uniform spacings can

be controlled by core patterns

9

A

B
30

40

Core pattern

Spacer

Cut pattern

Target layout

Cut Pattern Determination

 Cut patterns are used to remove spacers not covering

layout patterns

 A cut pattern can be immediately determined as a core

pattern is chosen

10

Target

Core

Spacer

Cut

Previous Studies

 SID-type layout decomposition

 Ban et al., “Flexible 2D layout decomposition framework for

spacer-type double patterning lithography,” in DAC-2011

 Zhang et al., “Self-aligned double patterning decomposition for

overlay minimization and hot spot detection,” in DAC-2011

 Xiao et al., “A polynomial time exact algorithm for self-aligned

double patterning layout decomposition,” in ISPD-2012

 SIM-type layout decomposition

 Zhang et al., “Effective decomposition algorithm for self-aligned

double patterning lithography,” in SPIE-2011

 A SAT-based algorithm (NP-complete)

 Not applicable to indecomposable designs

11

SIM-Type Layout Decomposition

 Terminologies

 A core conflict: a pair of core patterns with distance < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 A cut conflict: a pair of cut patterns with distance < 𝑑𝑖𝑠𝑐𝑢𝑡

 Problem formulation

 Given: a photomask layout

 Objective: a layout decomposition result with minimized #conflicts

 A layout decomposition result = a core mask + a cut mask

 #conflicts = #core conflicts + #cut conflicts

 Constraint: the produced layout is exactly the same as the

original one

12

Outline

13

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

Outline

14

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

Core Candidate Identification

 Core candidates are identified for spacer deposition

 Fragment polygons into rectangles (features)

 Identify two core candidates for each feature

15

A D

B C
A2

A1 A D

B CB1 B2

F
F2

F1

A D

F

B C

Target pattern Core candidate

Core-Feature Matching Graph Construction

 Construct a core-feature matching graph 𝐺𝑀

 A feature vertex 𝑢: a feature

 A core vertex 𝑣: a core candidate

 An edge (𝑢, 𝑣): 𝑣 is a core candidate of 𝑢

 Merge equivalent vertices to reduce graph complexity

16

F1 F2

F

A1 A2 B1

A B C D

B2 C1 C2 D1 D2

Core vertex Feature vertex

A D

B C
A2

A1

A D

B CB1 B2

F
F2

F1

F1 F2

F

A1 A2 B1

A B C D

B2C1 C2 D1 D2

Merge equivalent vertices

A D

B CC2C1

Conflict Graph Construction

 Inspect conflicts among core candidates

 The distance between two core candidates < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 The two core candidates cannot be merged

 Construct a conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflicting

17

F
F2

F1

A1 A D

B C
B2

C1

D2

F1 F2

A1 B1 B2C1 C2 D1

B1

A2

C2

D1
A2 D2

Conflict Graph Construction (cont’d)

 Inspect conflicts among cut patterns

 The distance between two cut patterns < 𝑑𝑖𝑠𝑐𝑢𝑡

 The two cut patterns cannot be merged

 Update the conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflict or two corresponding cut

patterns are conflict

18

A1 A D

B C
B2

C1

A1 A D

B C
B2

C1

F1 F2

A1 B1 B2C1 C2 D1

A2 D2

Graph Formulation

 Construct the combination graph 𝐺 of a core-feature

matching graph 𝐺𝑀 and a conflict graph 𝐺𝐶

 Problem Constrained Set Covering Problem (SCP)

 Given: a combination graph

 Objective: a set cover ℂ with the minimized #conflicts

 A set cover ℂ : a set of core vertices

 #conflicts: #conflict edges within ℂ

 Constraint: all feature vertices are covered by ℂ

19

FA B C D

Feature vertex

Covering edge

Conflict edge

Core vertex

A1 A2 F1 F2B2C1 D2D1B1 C2 Set cover ℂ

Outline

20

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

Initial Solution Derivation

 Greedy principle: select the most cost-effective core

vertex into the set cover ℂ at a time

 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖): #uncovered feature vertices covered by 𝑣𝑖

 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖): increased #conflict edges due to the addition of 𝑣𝑖

into ℂ

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) − 𝛼 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖)

 Algorithm Greedy Algorithm for Constrained SCP

Step 1 Compute 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑖) for each core vertex 𝑣𝑖

Step 2 Add 𝑣𝑗 with the largest 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑗) into ℂ

Step 3 Update 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) and 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖) for each 𝑣𝑖 ∈ ℂ

Repeat Steps 1 to 3 until all feature vertices are covered

21

Example of the Greedy Algorithm

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑣𝑖 − 0.5 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣𝑖

22

v1 v2 v3 v4 v5

u1 u2 u3 u4

1 2 2 2 1

v1 v2 v3 v4 v5

u1 u2 u3 u4

v1 v2 v3 v4 v5

u1 u2 u3 u4

0.5 0.5 0.5 0.5

v1 v2 v3 v4 v5

u1 u2 u3 u4

v1 v2 v3 v4 v5

u1 u2 u3 u4

-1 0.5 0.5

v1 v2 v3 v4 v5

u1 u2 u3 u4

Feature vertex

Covering edge

Conflict edge

Core vertex
Set cover ℂ

Outline

23

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation

F-M Heuristic

 The solution refinement algorithm is based on the F-M

partitioning heuristic [Fiduccia and Mattheyses, DAC’82]

 Objective: minimize #cut edges in a partition

 In each step, move a vertex with the largest gain and lock it

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑒𝑑𝑔𝑒_𝑐𝑢𝑡 𝑣

 In each iteration, choose the partition with the maximum partial

sum of gains as the refinement solution

24

A

C

B

D

1 1

11

A

C

B

D

-1

11

Partial sum = 1

D

C

B

A

Partial sum = 2

Free vertex

Locked vertex

Vertex gain

Partition-Based Solution Refinement

 Solution refinement for the constrained SCP

 Initial partition: the initial solution from the greedy algorithm

 Objective: minimize #conflicts in the set cover ℂ of a partition

 Constraint: the refinement solution (a partition with the maximum

partial sum) must be legal in each iteration

 A legal partition: all feature vertices are covered by the

corresponding set cover ℂ

25

u1 u2 u3 u4

v1

v3

v4

v2

v5

 ℂ
Set cover ℂ

v1 v2 v3 v4 v5

u1 u2 u3 u4

Feature vertex

Core vertex

Locked core vertex

Covering edge

Conflict edge

Initial partition

Partition-Based Solution Refinement (cont’d)

 Solution legalization by gain setting

 Vertex gain: 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣)

 Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣): variation of #conflicts due to the movement of 𝑣

 Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣): variation of #uncovered feature vertices

 Theorem By setting 𝛽 > 2𝑑, the partition-based algorithm can

always find a legal refinement solution in each iteration

 𝑑: maximum #conflict edges incident to a core vertex

26

u1 u2 u3 u4

v1

v3

v4

v2

v5

 ℂ
Set cover ℂ

u1 u2 u3 u4

v1

v3

v4

v2

v5

An illegal partition

Feature vertex

Core vertex

Locked core vertex

Covering edge

Conflict edge

Example of Solution Refinement

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟 𝑣
 𝛽 = 2𝑑 + 1 = 9

27

Feature vertex

Covering edge

Conflict edge

Core vertex

Locked core vertex

-7

u1 u2 u3 u4

v1

v3

v4

v2

v5

 ℂ
Set cover ℂ

-8

-8

-2

-2

u1 u2 u3 u4

v1

v3

v4

v2

v5

Partial sum = -2

u1 u2 u3 u4

v1

v3

v4

v2

v5

Partial sum = +1

u1 u2 u3 u4

v1

v3

v4

v2

v5

Partial sum = +2

u1 u2 u3 u4

v1

v3

v4

v2

v5

-8

+2

-2
+3

u1 u2 u3 u4

v1

v3

v4

v2

v5 -18

+1

-1

Outline

28

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Experimental Setup

 Platform

 C++ programming language

 2.13 GHz Linux workstation with 48 GB memory

 Benchmark

 ISCAS-89 circuits

 Routing wires in Metal-2, 2D gridless layouts, uniform wire width

 Indecomposable layouts (previous study [Zhang et al., SPIE’11] is

not applicable)

 Comparison

 A random algorithm for the constrained SCP was implemented

 Core vertices covering some uncovered feature vertices are

randomly and sequentially selected

29

Experimental Results and Conclusion

 The greedy heuristic generates 7X fewer conflicts than the random

method

 The partition-based solution refinement further reduce 84.7% #conflicts

 Our algorithms can effectively derive an SIM-type layout decomposition

solution with desired numbers of core conflicts.

30

Layout Decomposition Result

31

 A local view of the layout decomposition result of s5378

Target pattern

Core pattern

Cut pattern

Outline

32

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Conclusions

 This paper proposes an efficient graph-based SIM-type

layout decomposition algorithm for SADP

 The decomposition problem is transformed into a

constrained SCP and solved with efficient heuristic

algorithms

 Experimental results have shown that our algorithms can

effectively derive good SIM-type layout decomposition

solutions

33

