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LELE Double Patterning Lithography

 Litho-etch-litho-etch (LELE) double patterning lithography 

(DPL) has been widely known and used in industry
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Self-Aligned Double Patterning (SADP)

 Self-aligned double patterning (SADP) becomes more 

popular due to the better overlay and critical dimension 

(CD) controllability

 Processes in SADP

 Positive: spacers define lines

 Negative: spacers define trenches
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Layout Decomposition in SADP

 Layout decomposition (LD) in SADP

 Spacer-is-metal (SIM): spacers define patterns

 Spacer-is-dielectric (SID): spacers define spacings among 

patterns
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SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD
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SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD

 SIM-type 2D layout decomposition

 Patterns are formed by spacers

 May have better decomposability since non-uniform spacings can 

be controlled by core patterns
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Cut Pattern Determination

 Cut patterns are used to remove spacers not covering 

layout patterns

 A cut pattern can be immediately determined as a core 

pattern is chosen
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Previous Studies

 SID-type layout decomposition 

 Ban et al., “Flexible 2D layout decomposition framework for 

spacer-type double patterning lithography,” in DAC-2011

 Zhang et al., “Self-aligned double patterning decomposition for 

overlay minimization and hot spot detection,” in DAC-2011

 Xiao et al., “A polynomial time exact algorithm for self-aligned 

double patterning layout decomposition,” in ISPD-2012

 SIM-type layout decomposition

 Zhang et al., “Effective decomposition algorithm for self-aligned 

double patterning lithography,” in SPIE-2011

 A SAT-based algorithm (NP-complete)

 Not applicable to indecomposable designs
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SIM-Type Layout Decomposition

 Terminologies

 A core conflict: a pair of core patterns with distance < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 A cut conflict: a pair of cut patterns with distance < 𝑑𝑖𝑠𝑐𝑢𝑡

 Problem formulation

 Given: a photomask layout

 Objective: a layout decomposition result with minimized #conflicts

 A layout decomposition result = a core mask + a cut mask

 #conflicts = #core conflicts + #cut conflicts

 Constraint: the produced layout is exactly the same as the 

original one
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Core Candidate Identification

 Core candidates are identified for spacer deposition

 Fragment polygons into rectangles (features)

 Identify two core candidates for each feature
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Core-Feature Matching Graph Construction

 Construct a core-feature matching graph 𝐺𝑀

 A feature vertex 𝑢: a feature

 A core vertex 𝑣: a core candidate

 An edge (𝑢, 𝑣): 𝑣 is a core candidate of 𝑢

 Merge equivalent vertices to reduce graph complexity
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Conflict Graph Construction

 Inspect conflicts among core candidates

 The distance between two core candidates < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 The two core candidates cannot be merged

 Construct a conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflicting 
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Conflict Graph Construction (cont’d)

 Inspect conflicts among cut patterns

 The distance between two cut patterns < 𝑑𝑖𝑠𝑐𝑢𝑡

 The two cut patterns cannot be merged

 Update the conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflict or two corresponding cut 

patterns are conflict
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Graph Formulation

 Construct the combination graph 𝐺 of a core-feature 

matching graph 𝐺𝑀 and a conflict graph 𝐺𝐶

 Problem Constrained Set Covering Problem (SCP)

 Given: a combination graph

 Objective: a set cover ℂ with the minimized #conflicts

 A set cover ℂ : a set of core vertices

 #conflicts: #conflict edges within ℂ

 Constraint: all feature vertices are covered by ℂ
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Initial Solution Derivation

 Greedy principle: select the most cost-effective core 

vertex into the set cover ℂ at a time

 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖): #uncovered feature vertices covered by 𝑣𝑖

 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖): increased #conflict edges due to the addition of 𝑣𝑖

into ℂ

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) − 𝛼 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖)

 Algorithm Greedy Algorithm for Constrained SCP

Step 1 Compute 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑖) for each core vertex 𝑣𝑖

Step 2 Add 𝑣𝑗 with the largest 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑗) into ℂ

Step 3 Update 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) and 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖) for each 𝑣𝑖 ∈  ℂ

Repeat Steps 1 to 3 until all feature vertices are covered
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Example of the Greedy Algorithm

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑣𝑖 − 0.5 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣𝑖

22

v1 v2 v3 v4 v5

u1 u2 u3 u4

1 2 2 2 1

v1 v2 v3 v4 v5

u1 u2 u3 u4

v1 v2 v3 v4 v5

u1 u2 u3 u4

0.5 0.5 0.5 0.5

v1 v2 v3 v4 v5

u1 u2 u3 u4

v1 v2 v3 v4 v5

u1 u2 u3 u4

-1 0.5 0.5

v1 v2 v3 v4 v5

u1 u2 u3 u4

Feature vertex

Covering edge

Conflict edge

Core vertex
Set cover ℂ



Outline

23

Conclusions

Experimental Results

SIM-Type Layout Decomposition

Preliminaries

Introduction

Partition-based Solution Refinement

Initial Solution Derivation

Graph Formulation



F-M Heuristic

 The solution refinement algorithm is based on the F-M 

partitioning heuristic [Fiduccia and Mattheyses, DAC’82]

 Objective: minimize #cut edges in a partition

 In each step, move a vertex with the largest gain and lock it

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑒𝑑𝑔𝑒_𝑐𝑢𝑡 𝑣

 In each iteration, choose the partition with the maximum partial 

sum of gains as the refinement solution
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Partition-Based Solution Refinement

 Solution refinement for the constrained SCP

 Initial partition: the initial solution from the greedy algorithm

 Objective: minimize #conflicts in the set cover ℂ of a partition

 Constraint: the refinement solution (a partition with the maximum 

partial sum) must be legal in each iteration

 A legal partition: all feature vertices are covered by the 

corresponding set cover ℂ
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Partition-Based Solution Refinement (cont’d)

 Solution legalization by gain setting

 Vertex gain: 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣)

 Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣): variation of #conflicts due to the movement of 𝑣

 Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣): variation of #uncovered feature vertices

 Theorem By setting 𝛽 > 2𝑑, the partition-based algorithm can 

always find a legal refinement solution in each iteration

 𝑑: maximum #conflict edges incident to a core vertex
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Example of Solution Refinement

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟 𝑣
 𝛽 = 2𝑑 + 1 = 9
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Experimental Setup

 Platform

 C++ programming language

 2.13 GHz Linux workstation with 48 GB memory

 Benchmark

 ISCAS-89 circuits 

 Routing wires in Metal-2, 2D gridless layouts, uniform wire width

 Indecomposable layouts (previous study [Zhang et al., SPIE’11] is 

not applicable)

 Comparison

 A random algorithm for the constrained SCP was implemented

 Core vertices covering some uncovered feature vertices are 

randomly and sequentially selected

29



Experimental Results and Conclusion

 The greedy heuristic generates 7X fewer conflicts than the random 

method

 The partition-based solution refinement further reduce 84.7% #conflicts

 Our algorithms can effectively derive an SIM-type layout decomposition 

solution with desired numbers of core conflicts.
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Layout Decomposition Result
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Conclusions

 This paper proposes an efficient graph-based SIM-type 

layout decomposition algorithm for SADP

 The decomposition problem is transformed into a 

constrained SCP and solved with efficient heuristic 

algorithms

 Experimental results have shown that our algorithms can 

effectively derive good SIM-type layout decomposition 

solutions
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