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LELE Double Patterning Lithography

a Litho-etch-litho-etch (LELE) double patterning lithography
(DPL) has been widely known and used in industry
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Self-Aligned Double Patterning (SADP)

0 Self-aligned double patterning (SADP) becomes more
popular due to the better overlay and critical dimension
(CD) controllability

2 Processes in SADP
— Positive: spacers define lines
— Negative: spacers define trenches
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Layout Decomposition in SADP

2 Layout decomposition (LD) in SADP
— Spacer-is-metal (SIM): spacers define patterns

— Spacer-is-dielectric (SID): spacers define spacings among
patterns
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SIM-Type vs. SID-Type 2D LD

0 SID-type 2D layout decomposition
— Patterns are formed by either core patterns or assist core patterns
— Patterns with arbitrary spacing values may be distorted after LD
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SIM-Type vs. SID-Type 2D LD

Q SID-type 2D layout decomposition
— Patterns are formed by either core patterns or assist core patterns
— Patterns with arbitrary spacing values may be distorted after LD
2 SIM-type 2D layout decomposition

— Patterns are formed by spacers

— May have better decomposability since non-uniform spacings can
be controlled by core patterns
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Cut Pattern Determination

a Cut patterns are used to remove spacers not covering
layout patterns

O A cut pattern can be immediately determined as a core
pattern is chosen
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Previous Studies

2 SID-type layout decomposition

— Ban et al., “Flexible 2D layout decomposition framework for
spacer-type double patterning lithography,” in DAC-2011

— Zhang et al., “Self-aligned double patterning decomposition for
overlay minimization and hot spot detection,” in DAC-2011

— Xiao et al., “A polynomial time exact algorithm for self-aligned
double patterning layout decomposition,” in ISPD-2012
2 SIM-type layout decomposition

— Zhang et al., “Effective decomposition algorithm for self-aligned
double patterning lithography,” in SPIE-2011

« A SAT-based algorithm (NP-complete)
« Not applicable to indecomposable designs
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SIM-Type Layout Decomposition

2 Terminologies
— A core conflict: a pair of core patterns with distance < dis;yre
— A cut conflict: a pair of cut patterns with distance < dis.,;

2 Problem formulation
— Given: a photomask layout
— Objective: a layout decomposition result with minimized #conflicts
» A layout decomposition result = a core mask + a cut mask
» #conflicts = #core conflicts + #cut conflicts

— Constraint: the produced layout is exactly the same as the
original one
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Core Candidate Identification

0 Core candidates are identified for spacer deposition
— Fragment polygons into rectangles (features)
— ldentify two core candidates for each feature
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Core-Feature Matching Graph Construction

O Construct a core-feature matching graph Gy,
— A feature vertex u: a feature
— A core vertex v: a core candidate
— An edge (u,v): vis a core candidate of u

2 Merge equivalent vertices to reduce graph complexity

O Core vertex O Feature vertex
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Conflict Graph Construction

2 Inspect conflicts among core candidates
— The distance between two core candidates < dis
— The two core candidates cannot be merged

2 Construct a conflict graph G,

— Avertex v: a core candidate
— An edge (v;, v;): v; and v; are conflicting
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Conflict Graph Construction (cont’d)

a Inspect conflicts among cut patterns

— The distance between two cut patterns < dis
— The two cut patterns cannot be merged

2 Update the conflict graph G

— A vertex v: a core candidate

— An edge (v;, v;): v; and v; are conflict or two corresponding cut
patterns are conflict
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Graph Formulation

2 Construct the combination graph G of a core-feature
matching graph G,;, and a conflict graph G

a Problem Constrained Set Covering Problem (SCP)
— Given: a combination graph
— Objective: a set cover C with the minimized #conflicts
= A set cover C: a set of core vertices
» #conflicts: #conflict edges within C
— Constraint: all feature vertices are covered by C

(O Core vertex
O Feature vertex
O setcoverc
— Covering edge
........ Conflict edge
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Initial Solution Derivation

2 Greedy principle: select the most cost-effective core
vertex into the set cover C at a time

— covering(v;):. #uncovered feature vertices covered by v;

— conflict(v;): increased #conflict edges due to the addition of v;
Into C

— effectiveness(v;) = covering(v;) — a - conflict(v;)
a Algorithm Greedy Algorithm for Constrained SCP

Step 1 Compute ef fectiveness(v;) for each core vertex v;
Step 2 Add v; with the largest ef fectiveness(v;) into C

Step 3 Update covering(v;) and conflict(v;) for each v; € C
Repeat Steps 1 to 3 until all feature vertices are covered
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Example of the Greedy Algorithm

Q effectiveness(v;) = covering(v;) — 0.5 - conflict(v;)

(O Core vertex 0 cet c — Covering edge
et cover .
O Feature vertex ™ =7 77T 7 L Conflict edge
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F-M Heuristic

2 The solution refinement algorithm is based on the F-M
partitioning heuristic [Fiduccia and Mattheyses, DAC’82]
— Objective: minimize #cut edges in a partition
— In each step, move a vertex with the largest gain and lock it
» gain(v) = —Aedge_cut(v)

— In each iteration, choose the partition with the maximum partial
sum of gains as the refinement solution
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Partition-Based Solution Refinement

3 Solution refinement for the constrained SCP

— Initial partition: the initial solution from the greedy algorithm
— Objective: minimize #conflicts in the set cover C of a partition

— Constraint: the refinement solution (a partition with the maximum
partial sum) must be legal in each iteration
» A legal partition: all feature vertices are covered by the
corresponding set cover C
Initial partition

O Feature vertex

(O Core vertex

O Locked core vertex
— Covering edge

--- Conflict edge
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Partition-Based Solution Refinement (cont’d)

O Solution legalization by gain setting
— Vertex gain: gain(v) = —Aconflict(v) — B X Auncover(v)
» Aconflict(v): variation of #conflicts due to the movement of v
« Auncover(v): variation of #uncovered feature vertices

— Theorem By setting 8 > 2d, the partition-based algorithm can
always find a legal refinement solution in each iteration

» d: maximum #conflict edges incident to a core vertex

Set cover C

O Feature vertex

O Core vertex

QO Locked core vertex
— Covering edge

--- Conflict edge

An illegal partition



Example of Solution Refinement

Q gain(v) = —Aconflict(v) — [ X Auncover(v)
_B=2d+1=09

Set cover C

QO Feature vertex

(O Core vertex

O Locked core vertex
— Covering edge

------ Conflict edge

Partial sum = +2
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Experimental Setup

2 Platform
— C++ programming language
— 2.13 GHz Linux workstation with 48 GB memory
2 Benchmark
— ISCAS-89 circuits
— Routing wires in Metal-2, 2D gridless layouts, uniform wire width
— Indecomposable layouts (previous study [Zhang et al., SPIE'11] is
not applicable)
2 Comparison
— A random algorithm for the constrained SCP was implemented

— Core vertices covering some uncovered feature vertices are
randomly and sequentially selected
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#Conflicts

Experimental Results and Conclusion

O The greedy heuristic generates 7X fewer conflicts than the random

method

O The partition-based solution refinement further reduce 84.7% #conflicts
O Our algorithms can effectively derive an SIM-type layout decomposition

solution with desired numbers of core conflicts.
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Layout Decomposition Result

2 A local view of the layout decomposition result of s5378
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Conclusions

2 This paper proposes an efficient graph-based SIM-type
layout decomposition algorithm for SADP

2 The decomposition problem is transformed into a
constrained SCP and solved with efficient heuristic
algorithms

O Experimental results have shown that our algorithms can
effectively derive good SIM-type layout decomposition
solutions
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