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LELE Double Patterning Lithography

 Litho-etch-litho-etch (LELE) double patterning lithography 

(DPL) has been widely known and used in industry
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Self-Aligned Double Patterning (SADP)

 Self-aligned double patterning (SADP) becomes more 

popular due to the better overlay and critical dimension 

(CD) controllability

 Processes in SADP

 Positive: spacers define lines

 Negative: spacers define trenches
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Layout Decomposition in SADP

 Layout decomposition (LD) in SADP

 Spacer-is-metal (SIM): spacers define patterns

 Spacer-is-dielectric (SID): spacers define spacings among 

patterns
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SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD
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SIM-Type vs. SID-Type 2D LD

 SID-type 2D layout decomposition

 Patterns are formed by either core patterns or assist core patterns

 Patterns with arbitrary spacing values may be distorted after LD

 SIM-type 2D layout decomposition

 Patterns are formed by spacers

 May have better decomposability since non-uniform spacings can 

be controlled by core patterns
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Cut Pattern Determination

 Cut patterns are used to remove spacers not covering 

layout patterns

 A cut pattern can be immediately determined as a core 

pattern is chosen
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Previous Studies

 SID-type layout decomposition 

 Ban et al., “Flexible 2D layout decomposition framework for 

spacer-type double patterning lithography,” in DAC-2011

 Zhang et al., “Self-aligned double patterning decomposition for 

overlay minimization and hot spot detection,” in DAC-2011

 Xiao et al., “A polynomial time exact algorithm for self-aligned 

double patterning layout decomposition,” in ISPD-2012

 SIM-type layout decomposition

 Zhang et al., “Effective decomposition algorithm for self-aligned 

double patterning lithography,” in SPIE-2011

 A SAT-based algorithm (NP-complete)

 Not applicable to indecomposable designs
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SIM-Type Layout Decomposition

 Terminologies

 A core conflict: a pair of core patterns with distance < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 A cut conflict: a pair of cut patterns with distance < 𝑑𝑖𝑠𝑐𝑢𝑡

 Problem formulation

 Given: a photomask layout

 Objective: a layout decomposition result with minimized #conflicts

 A layout decomposition result = a core mask + a cut mask

 #conflicts = #core conflicts + #cut conflicts

 Constraint: the produced layout is exactly the same as the 

original one
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Core Candidate Identification

 Core candidates are identified for spacer deposition

 Fragment polygons into rectangles (features)

 Identify two core candidates for each feature
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Core-Feature Matching Graph Construction

 Construct a core-feature matching graph 𝐺𝑀

 A feature vertex 𝑢: a feature

 A core vertex 𝑣: a core candidate

 An edge (𝑢, 𝑣): 𝑣 is a core candidate of 𝑢

 Merge equivalent vertices to reduce graph complexity
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Conflict Graph Construction

 Inspect conflicts among core candidates

 The distance between two core candidates < 𝑑𝑖𝑠𝑐𝑜𝑟𝑒
 The two core candidates cannot be merged

 Construct a conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflicting 
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Conflict Graph Construction (cont’d)

 Inspect conflicts among cut patterns

 The distance between two cut patterns < 𝑑𝑖𝑠𝑐𝑢𝑡

 The two cut patterns cannot be merged

 Update the conflict graph 𝐺𝐶

 A vertex 𝑣: a core candidate

 An edge (𝑣𝑖 , 𝑣𝑗): 𝑣𝑖 and 𝑣𝑗 are conflict or two corresponding cut 

patterns are conflict
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Graph Formulation

 Construct the combination graph 𝐺 of a core-feature 

matching graph 𝐺𝑀 and a conflict graph 𝐺𝐶

 Problem Constrained Set Covering Problem (SCP)

 Given: a combination graph

 Objective: a set cover ℂ with the minimized #conflicts

 A set cover ℂ : a set of core vertices

 #conflicts: #conflict edges within ℂ

 Constraint: all feature vertices are covered by ℂ
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Initial Solution Derivation

 Greedy principle: select the most cost-effective core 

vertex into the set cover ℂ at a time

 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖): #uncovered feature vertices covered by 𝑣𝑖

 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖): increased #conflict edges due to the addition of 𝑣𝑖

into ℂ

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) − 𝛼 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖)

 Algorithm Greedy Algorithm for Constrained SCP

Step 1 Compute 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑖) for each core vertex 𝑣𝑖

Step 2 Add 𝑣𝑗 with the largest 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠(𝑣𝑗) into ℂ

Step 3 Update 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔(𝑣𝑖) and 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣𝑖) for each 𝑣𝑖 ∈  ℂ

Repeat Steps 1 to 3 until all feature vertices are covered
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Example of the Greedy Algorithm

 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 𝑣𝑖 = 𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔 𝑣𝑖 − 0.5 ⋅ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣𝑖
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F-M Heuristic

 The solution refinement algorithm is based on the F-M 

partitioning heuristic [Fiduccia and Mattheyses, DAC’82]

 Objective: minimize #cut edges in a partition

 In each step, move a vertex with the largest gain and lock it

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑒𝑑𝑔𝑒_𝑐𝑢𝑡 𝑣

 In each iteration, choose the partition with the maximum partial 

sum of gains as the refinement solution
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Partition-Based Solution Refinement

 Solution refinement for the constrained SCP

 Initial partition: the initial solution from the greedy algorithm

 Objective: minimize #conflicts in the set cover ℂ of a partition

 Constraint: the refinement solution (a partition with the maximum 

partial sum) must be legal in each iteration

 A legal partition: all feature vertices are covered by the 

corresponding set cover ℂ
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Partition-Based Solution Refinement (cont’d)

 Solution legalization by gain setting

 Vertex gain: 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣)

 Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡(𝑣): variation of #conflicts due to the movement of 𝑣

 Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟(𝑣): variation of #uncovered feature vertices

 Theorem By setting 𝛽 > 2𝑑, the partition-based algorithm can 

always find a legal refinement solution in each iteration

 𝑑: maximum #conflict edges incident to a core vertex
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Example of Solution Refinement

 𝑔𝑎𝑖𝑛 𝑣 = −Δ𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑣 − 𝛽 × Δ𝑢𝑛𝑐𝑜𝑣𝑒𝑟 𝑣
 𝛽 = 2𝑑 + 1 = 9
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Experimental Setup

 Platform

 C++ programming language

 2.13 GHz Linux workstation with 48 GB memory

 Benchmark

 ISCAS-89 circuits 

 Routing wires in Metal-2, 2D gridless layouts, uniform wire width

 Indecomposable layouts (previous study [Zhang et al., SPIE’11] is 

not applicable)

 Comparison

 A random algorithm for the constrained SCP was implemented

 Core vertices covering some uncovered feature vertices are 

randomly and sequentially selected
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Experimental Results and Conclusion

 The greedy heuristic generates 7X fewer conflicts than the random 

method

 The partition-based solution refinement further reduce 84.7% #conflicts

 Our algorithms can effectively derive an SIM-type layout decomposition 

solution with desired numbers of core conflicts.
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Layout Decomposition Result
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Conclusions

 This paper proposes an efficient graph-based SIM-type 

layout decomposition algorithm for SADP

 The decomposition problem is transformed into a 

constrained SCP and solved with efficient heuristic 

algorithms

 Experimental results have shown that our algorithms can 

effectively derive good SIM-type layout decomposition 

solutions
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