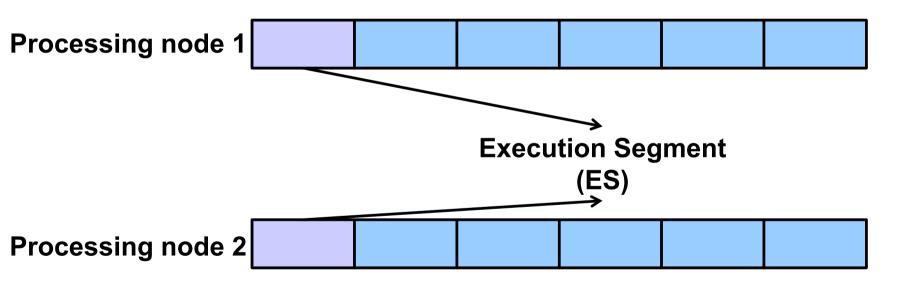


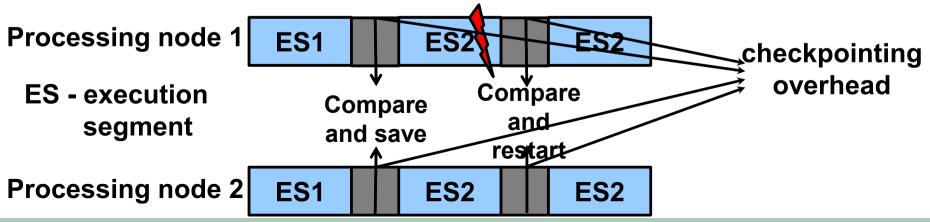
Maximizing Level of Confidence for Non-Equidistant Checkpointing

DIMITAR NIKOLOV AND ERIK LARSSON

- Efficient technique that copes with soft errors
- Capable of detection and recovery of soft errors
- Checkpoint, an intermediate state of a job
- Error detection: compare checkpoints from two processors on which a job is concurrently running
- Error recovery: re-execute a portion of the job
- Introduces a time overhead


 Job is duplicated and executed concurrently on two processing nodes

Processing node 1

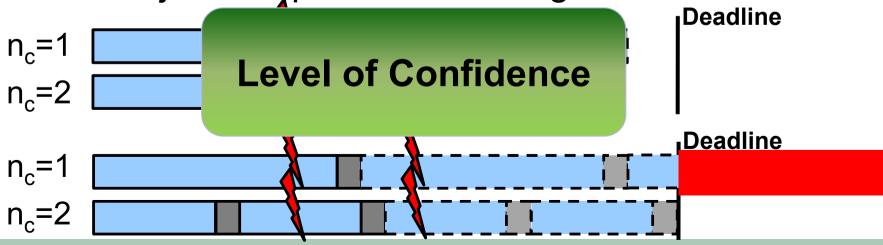

Job

Processing node 2

 Job is divided into execution segments, based on the number of checkpoints

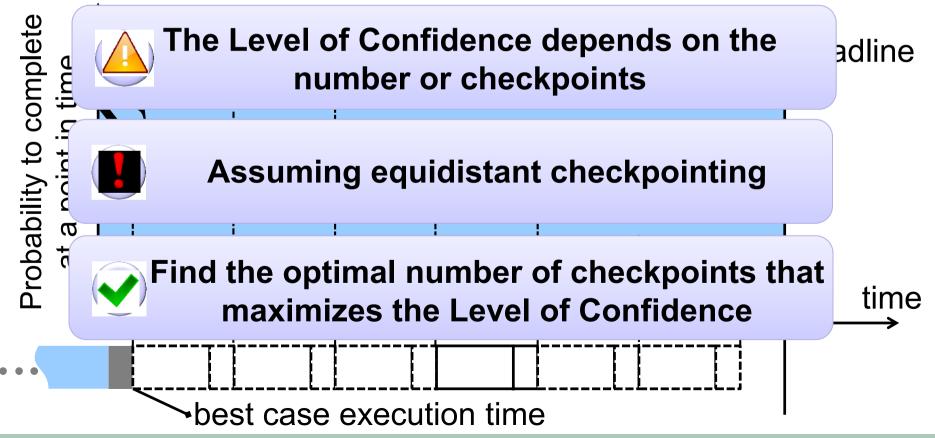
- After each execution segment, the checkpoints from both processing nodes are compared
- If the checkpoints match, they are saved, and the job continues with its execution
- If the checkpoints do not match, the job is restarted from the latest saved checkpoint

Roll-back Recovery with Checkpointing in Real-Time Systems

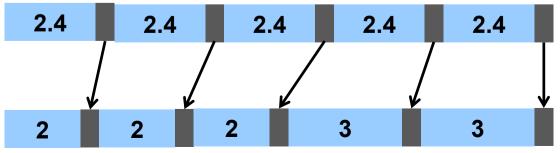

 The number of checkpoints, n_c, may be the reason to cause deadline violation

To what extent a deadline is met?

n_c=


n_c=

• The number of checkpoints impacts the probability that the job completes before a given deadline

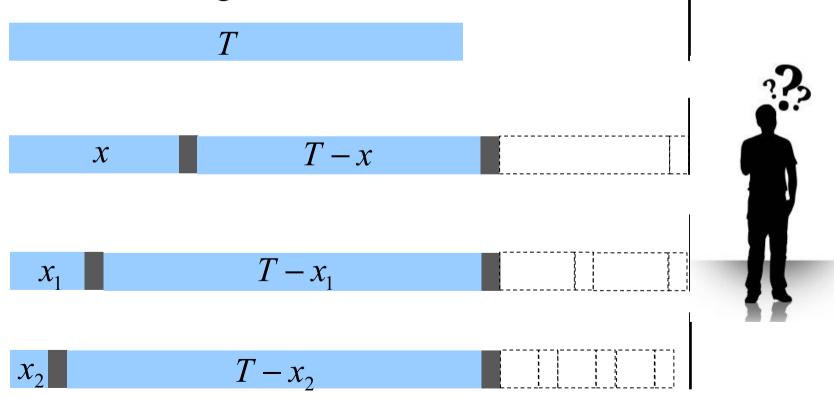

Level of Confidence

• Probability that a job completes before a deadline

Motivation

- A checkpoint cannot be taken before an on-going instruction completes
- Assumption: each instruction takes one time unit to complete
- Non-equidistant checkpointing has to be considered
- Consider that n_c=5 and the processing time r=12 time unites

۷[•]؛


Motivation

 Given that n_c=2, what is the Level of Confidence to meet a given deadline

T T/2 T/2

Motivation

 Given that n_c=2, what is the Level of Confidence to meet the given deadline

Problem Formulation

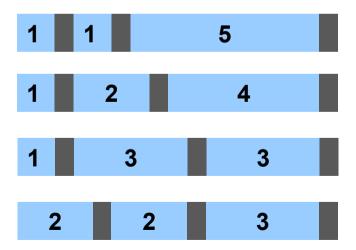
- Given the following inputs:
 - T, processing time
 - D, deadline
 - au , checkpointing overhead
 - $-P_T$, probability that no soft errors occur in interval T
 - n_c, number of checkpoints

find the optimal distribution of the given number of checkpoints that maximizes the Level of Confidence

Overview

- Exhaustive Search
- Clustered Checkpointing
- Results
- Conclusion

Exhaustive Search


- Explore all possible distributions of a number of checkpoints and for each distribution calculate the Level of Confidence with respect to the deadline
- Guarantees to find the optimal solution
- Some distributions are equivalent

 Sufficient to explore distributions where the execution segments are ordered in ascending order according to their size

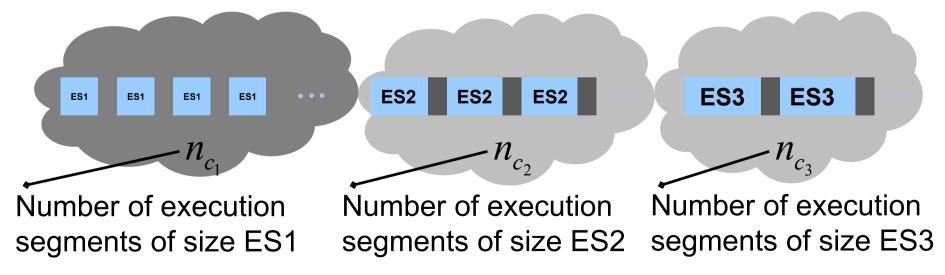
Exhaustive Search

 How many ways to distribute n_c=3 checkpoints for a job with a processing time is T=7 time units, assuming that a checkpoint can be taken only at integer time units?

Exhaustive Search

 How many ways to distribute n_c=10 checkpoints when the processing time is T=1000?

Overview


- Exhaustive Search
- Clustered Checkpointing
- Results
- Conclusion

Clustered Checkpointing

- It is a heuristic, thus does not guarantee optimality
- Explores only a limited set of distributions of a given number of checkpoints
- Number of distributions is of the same order as the processing time of the job which is given as input
- Arrives at a solution at much shorter computation time when compared against exhaustive search
- In most cases, provides the optimal solution

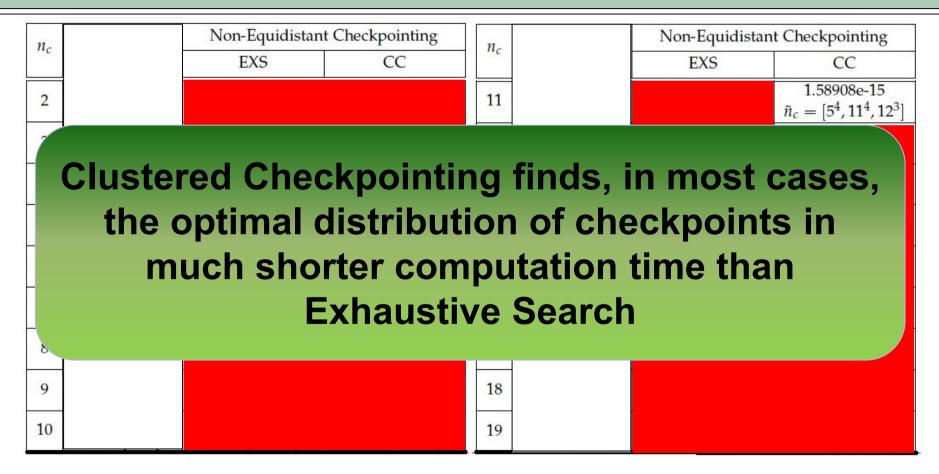
Clustered Checkpointing

- Explores only distributions made out of clusters, such that all the execution segments that belong to the same cluster have the same size
- Distributions made out of at most 3 clusters

Overview

- Exhaustive Search
- Clustered Checkpointing
- Results
- Conclusion

Results


- Comparing the achieved Level of Confidence (LoC) at various number of checkpoints for:
 - EQC (equidistant checkpointing)
 - EXS (Exhaustive search, *optimal solution)
 - CC (Clustered Checkpointing, heuristic)
- Given inputs:
 - -T = 100 t.u. (time units)
 - D =150 t.u.
 - $-\tau$ =2 t.u.
 - $-P_{T} = 0.99999$

Equidistant vs Non-Equidistant Checkpointing

nc	EQC	Non-Equidistant Checkpointing		n_c EQC	EQC	Non-Equidistant Checkpointing		
		EXS	CC	n _c	LQC	EXS	CC	
2	1.99999e-5 $\tilde{n}_c = [50^2]$			11	1.71943e-15 $\tilde{n}_c = [9^{10}, 10^1]$		•	
3	2.66678e-10			12	1.68642e-15			
$12 n_c = [8^8, 9^4]$ Non-Equidistant Checkpointing provides higher or at least equal LoC, but never worse, when compared against Equidistant Checkpointing $\frac{n_c = [11, 12]}{1.75999e-10}$								

Numbers represent the probability to miss the deadline, thus lower values indicate higher LoC

Exhaustive Search vs. Clustered Checkpointing

Maximal LoC

n _c	EQC	n _c	EQC	
2	1.99999e-5 $\tilde{n}_c = [50^2]$	11	1.71943e-15 $\tilde{n}_c = [9^{10}, 10^1]$	
3	2.66678e-10 $\hat{n}_c = [33^2, 34^1]$	12	1.68642e-15 $n_c = [8^8, 9^4]$	
4	2.49998e-10 $\tilde{n}_c = [25^4]$	13	1.65807e-15 $\hat{n}_c = [7^4, 8^9]$	
5	2.39998e-10 $\hat{n}_c = [20^5]$	14	1.63343e-15 $\tilde{n}_c = [7^{12}, 8^2]$	
6	2.07477e-15 $\hat{n}_c = [16^2, 17^4]$	15	1.61335e-15 $\tilde{n}_c = [6^5, 7^{10}]$	
7	1.95991e-15 $\hat{n}_c = [14^5, 15^2]$	16	1.59510e-15 $\hat{n}_c = [6^{12}, 7^4]$	
8	1.87599e-15 $\hat{n}_c = [12^4, 13^4]$		1 75100 - 10	
9	1.81113e-15 $\tilde{n}_c = [11^8, 12^1]$ 1.75999e-15	18	1.75199e-10 $\hat{n}_c = [5^8, 6^{10}]$	
10	$\tilde{n}_c = [10^{10}]$	19	2.10599e-10 $\tilde{n}_c = [5^{14}, 6^5]$	

Maximal LoC for EQC achieved for $n_c=17$

Maximal LoC

n _c	EQC	Non-Equidistant Checkpointing		n_c	EQC	Non-Equidistant Checkpointing	
		EXS	CC	**C	LQC	EXS	CC
2	1.99999e-5 $\hat{n}_c = [50^2]$	1.12000e-5 $\hat{n}_c = [44^1, 56^1]$	1.12000e-5 $\hat{n}_c = [44^1, 56^1]$	11	1.71943e-15 $\tilde{n}_c = [9^{10}, 10^1]$	$1.58463e-15 \\ \tilde{n}_c = [5^4, 8^1, 12^6]$	1.58908e-15 $\tilde{n}_c = [5^4, 11^4, 12^3]$
3	2.66678e-10 $\tilde{n}_c = [33^2, 34^1]$	2.55998e-10 $\hat{n}_c = [20^1, 40^2]$	$\begin{array}{l} \textbf{2.55998e-10} \\ \tilde{n}_c = [20^1, 40^2] \end{array}$		1.68642e-15 $\tilde{n}_c = [8^8, 9^4]$		
4	2.49998e-10 $\tilde{n}_c = [25^4]$	2.09559e-10 $\hat{n}_c = [19^2, 31^2]$	2.09559e-10 $\tilde{n}_c = [19^2, 31^2]$		1.65807e-15 $\tilde{n}_c = [7^4, 8^9]$		
5	2.39998e-10 $\tilde{n}_c = [20^5]$	1.12000e-10 $\tilde{n}_c = [18^4, 28^1]$	1.12000e-10 $\tilde{n}_c = [18^4, 28^1]$		1.63343e-15 $\tilde{n}_c = [7^{12}, 8^2]$		
6	2.07477e-15 $\tilde{n}_c = [16^2, 17^4]$	2.07477e-15 $\tilde{n}_c = [16^2, 17^4]$	2.07477e-15 $\tilde{n}_c = [16^2, 17^4]$		1.61335e-15 $\tilde{n}_c = [6^5, 7^{10}]$		
7	1.95991e-15 $\hat{n}_c = [14^5, 15^2]$	$\begin{array}{l} \textbf{1.95161e-15}\\ \tilde{n}_c = [7^1, 15^3, 16^3] \end{array}$	$\begin{array}{l} \textbf{1.95161e-15}\\ \tilde{n}_c = [7^1, 15^3, 16^3] \end{array}$	16	1.59510e-15 $\tilde{n}_c = [6^{12}, 7^4]$	1.59510e-15 $\hat{n}_c = [6^{12}, 7^4]$	1.59510e-15 $\tilde{n}_c = [6^{12}, 7^4]$
8	1.87599e-15 $\hat{n}_c = [12^4, 13^4]$	1.83839e-15 $\hat{n}_c = [7^2, 14^4, 15^2]$	1.83839e-15 $\tilde{n}_c = [7^2, 14^4, 15^2]$			1.57863e-15 $\hat{n}_c = [5^2, 6^{15}]$	1.57863e-15 $\hat{n}_c = [5^2, 6^{15}]$
9	1.81113e-15 $\tilde{n}_c = [11^8, 12^1]$	1.70906e-15 $\tilde{n}_c = [6^3, 13^2, 14^4]$	$\begin{array}{l} \textbf{1.70906e-15}\\ \tilde{n}_c = [6^3, 13^2, 14^4] \end{array}$	18	1.75199e-10 $\tilde{n}_c = [5^8, 6^{10}]$	7.60007e-11 $\tilde{n}_c = [5^{16}, 10^2]$	7.60007e-11 $\tilde{n}_c = [5^{16}, 10^2]$
	1.75999e-15 $\tilde{n}_c = [10^{10}]$			19	2.10599e-10 $\tilde{n}_c = [5^{14}, 6^5]$	1.36000e-10 $\tilde{n}_c = [4^{15}, 10^4]$	1.36000e-10 $\tilde{n}_c = [4^{15}, 10^4]$

Higher LoC than the maximal LoC achieved for EQC

Maximal LoC

n _c EOC	Non-Equidistant Checkpointing	n _c	EOC	Non-Equidistant	Checkpointing			
An LoC requirement can be satisfied with								
lower number of checkpoints when								
Non-Equidistant Checkpointing is used								
$5 \qquad \begin{array}{c} 2.39998e-10\\ \tilde{n}_c = [20^5]\\ 2.07477e-15 \end{array}$	1.12000e-10 1.12000e-10 $\hat{n}_c = [18^4, 28^1]$ $\hat{n}_c = [18^4, 28^1]$ 2.07477e-15 2.07477e-15	14	$n_c = [7^{12}, 8^2]$ 1.61335e-15	$\hat{n}_c = [4^3, 8^{11}]$ 1.57695e-15	$\begin{array}{c} 1.57695e{-}15\\ \hat{n}_c = [4^3, 8^{11}]\\ 1.57695e{-}15 \end{array}$			
The best case completion time, i.e. when no								
errors occur, can be reduced when								
Non-Equidistant Checkpointing is used								
$10 \qquad 1.75999e-15 \\ \tilde{n}_c = [10^{10}]$	$\tilde{n}_c = [8^6, 13^4]$ $\tilde{n}_c = [8^6, 13^4]$	19	$\hat{n}_c = [5^{14}, 6^5]$	$\tilde{n}_c = [4^{15}, 10^4]$	$\tilde{n}_c = [4^{15}, 10^4]$			

The maximal LoC can be achieved for $n_c=13$

Overview

- Exhaustive Search
- Clustered Checkpointing
- Results
- Conclusion

Conclusion

- By using non-equidistant checkpointing, the LoC can be improved in comparison to the LoC obtained when equidistant checkpointing is used
- An LoC requirement can be satisfied for a lower number of checkpoints if non-equidistant checkpointing is used
- The best case completion time, i.e. the time required for a job to complete when no errors occur, can be reduced while at the same time a given LoC requirement is satisfied

LUND UNIVERSITY