
A Mutual Auditing Framework to Protect
IoT against Hardware Trojans

Chen Liu, Patrick Cronin, and Chengmo Yang

10/03/2016

Page 1

Page 2

Outline

• Hardware Trojan in IoT

• Proposed Trojan detection scheme

• Simulation results

• Summary

USA
Design House

Europe
IP House

Asia
Foundry

Customer

Synthesis Fabrication IC

SoC integrator
3PIP vendor 1

IC testing &

Deployment

Layout

(GDSII)

IP house Design house Foundry Design house

Hardware Trojan: malicious elements inserted in circuitHardware Trojan: malicious elements inserted in circuit

User

Page 3

Synthesis Fabrication IC

SoC integrator
3PIP vendor 1

IC testing &

Deployment

Layout

(GDSII)

IP house Design house Foundry Design house

Hardware Trojan: malicious elements inserted in circuitHardware Trojan: malicious elements inserted in circuit

User

Page 4

Unwanted malicious circuit

Difficult to detect during testing:
1. Inserted at hard-to-detect place
2. May lack of golden model
3. May be hibernated

Difficult to detect during testing:
1. Inserted at hard-to-detect place
2. May lack of golden model
3. May be hibernated

Product with hardware Trojan sold to the customer…

Page 5

A Hardware Trojan
may…

Page 6

tamper
output

TrojanOutput
Wrong
Output

send secret
message

Device with Trojan

Trojan

Output Output

Device with Trojan

Secret
output

Page 7

Hardware Trojans
in a network may…

Page 8

Internet of Things (IoT)

NodesNodes ServersServers

Wireless

communication

Wireless

communication
Trojans?Trojans?

Page 9

An active Trojan may trigger the hibernated ones by
sending triggering messages

input

Malicious
Output

Normal operation Normal
Output

1000Trigger

M
U

X

output
=? input

Malicious
Output

Normal operation Normal
Output

1000Trigger

M
U

X

output
=?

1000

Entire network down in
a short while

Entire network down in
a short while

Fault tolerance
does not work
Fault tolerance
does not work

CatastropheCatastrophe

Page 10

Problem to solve: hardware Trojan collusion in IoT

Previous hardware Trojan
countermeasures [1,2,3] may detect

single Trojan but not Trojan collusion

Previous hardware Trojan
countermeasures [1,2,3] may detect

single Trojan but not Trojan collusion

Why difficult?Why difficult?

[1] M. Banga and M. S. Hsiao, “A Novel Sustained Vector Technique for the Detection of Hardware Trojans”
[2] S. Bhunia, M.S. Hsiao, M. Banga, and S. Narasimhan. “Hardware Trojan Attacks: Threat Analysis and

countermeasures”
[3] K. Xiao, X. Zhang, and M. Tehranipoor. “A Clock Sweeping Technique for Detecting Hardware Trojans

Impacting Circuits Delay”
[4] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security: a survey”
[5] A. Wood and J. A. Stankovic, “Denial of service in sensor networks”
[6] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen, “Diagnosis of sensor networks”

Previous IoT security solutions target
attacks from outside of the network
[4,5,6] but not attacks from the inside

Previous IoT security solutions target
attacks from outside of the network
[4,5,6] but not attacks from the inside

Our goal: prevent hardware Trojan in IoT from mutually triggering

Outline

• Proposed Trojan detection scheme

Page 12

Our goal: prevent hardware Trojan in IoT from mutually triggering

Our method:

Message encryptionMessage encryption

Mutual auditingMutual auditing Vendor diversityVendor diversity

Page 13

Each node is assigned a
unique cryptography key
Each node is assigned a

unique cryptography key

Each message should
be encrypted with

symmetric encryption

Each message should
be encrypted with

symmetric encryption

Cryptography shuffles message, including the Trojan trigger.

MessageMessage
ENCENC DECDEC

Encrypted
message

Encrypted
message

Cannot
decrypt!
Cannot

decrypt!trigger

Encrypted
message

Encrypted
message

Encryption to shuffle Trojan trigger

Page 14

Have
Trojan?

Have
Trojan?

Y

Encrypt the
message?

Encrypt the
message?

N Send trigger in
plaintext

Send trigger in
plaintext

Y

With
correct key

With
correct key

N Send trigger with
wrong encryption key

Send trigger with
wrong encryption key

Y
Send trigger with

correct encryption key
Send trigger with

correct encryption key
Trojan trigger being shuffledTrojan trigger being shuffled

How to
ensure correct

encryption?

How to
ensure correct

encryption?

Message tampered
by routing nodes

Message tampered
by routing nodes

HOWEVER, encryption by itself cannot fully solve the problem!

Page 15

Let’s introduce
Mutual auditing

Page 16

Node mutual auditing
First-hop auditing: each node is audited by its neighbor nodes

N1 has
activated

Trojan

N1 has
activated

Trojan

N1 sends
unencrypted

trigger message

N1 sends
unencrypted

trigger message

N2 performs audit
and intercepts the

message

N2 performs audit
and intercepts the

message N2 sends alarm
message to the

server

N2 sends alarm
message to the

server

Echo auditing: each auditor node is also audited by the node before

N7 sends a
message,

audited by N8

N7 sends a
message,

audited by N8

N8 broadcasts
the audited

message

N8 broadcasts
the audited

message

N7 audits the
message sent

by N8

N7 audits the
message sent

by N8

How to
perform
audit?

How to
perform
audit?

Page 17

Node mutual auditing
First-hop auditing: each node is audited by its neighbor nodes

Echo auditing:

Header Body

Header 1 0 1 1

audit bit ≤128 bits

Header Encrypted Body

FCSHeader Encrypted Body

Message sender: insert
pre-defined audit bits

Auditor: check if the audit
bits are valid

Frame check sequence
– for fault tolerance

For 128-bit
AES, every

block is
encrypted

For 128-bit
AES, every

block is
encrypted

FCSHeader Encrypted Body

Header Encrypted Body

Header 1 0 1 1

Page 18

Node mutual auditing
First-hop auditing: each node is audited by its neighbor nodes

Echo auditing:

Header Body

Header 1 0 1 1

audit bit ≤128 bits

Header Encrypted Body

FCSHeader Encrypted Body

Message sender: insert
pre-defined audit bits

Auditor: check if the audit
bits are valid

Frame check sequence
– for fault tolerance

For 128-bit
AES, every

block is
encrypted

For 128-bit
AES, every

block is
encrypted

FCSHeader Encrypted Body

Header Encrypted Body

Header #(!&$*!&)!*)@!

(no encryption or
with wrong key)

Page 19

Node mutual auditing
First-hop auditing:

Echo auditing: each auditor node is also audited by the message sender

Encrypted
message

Encrypted
message

Sender Firs-hop
Auditor

buffer

Encrypted
message

Encrypted
message

audi
ting
audi
ting

Encrypted
message

Encrypted
message

=?=?

Page 21

Security analysis for a node

Have
Trojan?

Have
Trojan?

N
All audits passedAll audits passed No false negative

Y

Auditee
secure?
Auditee
secure?

Tamper the message
audited

Tamper the message
audited

N
Fails echo auditingFails echo auditing

Y

Encrypt the
message?

Encrypt the
message?

N Send trigger in
plaintext

Send trigger in
plaintext

Fails first-hop
auditing

Fails first-hop
auditing

Y

With
correct key

With
correct key

N Send trigger with
wrong encryption key

Send trigger with
wrong encryption key

Fails first-hop
auditing

Fails first-hop
auditing

Y
Send trigger with

correct encryption key
Send trigger with

correct encryption key
Trigger being shuffledTrigger being shuffled No false positive

Page 22

Overhead analysis

Regular IoT with message encryption:

……

Message generator k hops Server

1 × encryption 1 × decryption

……

Message generator k hops Server

1 × encryption 1 × decryption

Proposed scheme:

1 × decryption

First-hop
auditing
First-hop
auditing

k × comparison

Echo auditingEcho auditing

In parallel with
message forwarding,

does not add any
delay

In parallel with
message forwarding,

does not add any
delay

Page 23

How to prevent
auditor and auditee

from collusion?

Page 24

Node vendor diversity

input

Malicious
Output

Normal operation Normal
Output

1000Trigger

M
U

X

output
=?

input

Malicious
Output

Normal operation Normal
Output

1500Trigger

M
U

X

output
=?

1000

Different
vendors
Different
vendors

Different
triggers

Different
triggers

Unable to
mutually trigger

Unable to
mutually trigger

Page 25

Node vendor diversity – how many vendors?

Different
vendors
Different
vendors

Different
triggers

Different
triggers

Unable to
mutually trigger

Unable to
mutually trigger

One vendor per node = 100% secure = huge overhead

Page 26

Node vendor diversity – how many vendors?

Node routing mapNode routing map
Graph coloring

algorithm
Graph coloring

algorithm
Node vendor

selection
Node vendor

selection

Color of auditee ≠ Color of auditor Secure

Determining vendor of nodes through graph coloring 8 vendors 3 vendors

Outline

• Simulation results

Page 29

Methodology

Parameters Values

Simulation tool NS-2

Network scale

network size 10 × 10 to 20 × 20

max bandwidth 100 MB/s

expected traffic 40 to 100 packets/s

Network
parameters

packet size 200 B body + 78 B metadata

packet processing time 1 ms per hop

cryptography overhead 1 ms per 128 bits

Page 30

Security study by simulating Trojan activation

A hibernated Trojan
can be either:

Self triggered with a probability of p per packet

Mutually triggered by successfully receiving and decoding
triggering message sent by active Trojan from the same vendor

0%

20%

40%

60%

80%

100%

120%

0.01 0.015 0.02 0.025 0.03 0.035 0.04

Pe
rc

en
ta

ge
 o

f
In

fe
ct

ed
 N

o
d

es

Self triggering probability p (%)

Percentage of Infected Nodes with Different Network Sizes

10*10 Proposed

10*10 Baseline

16*16 Proposed

16*16 Baseline

20*20 Proposed

20*20 Baseline

In the baseline, almost
all the Trojans are
activated.

In the baseline, almost
all the Trojans are
activated.

With the proposed
scheme, mutually
triggering is eliminated

With the proposed
scheme, mutually
triggering is eliminated

With larger p, more
Trojans are self-triggered
With larger p, more
Trojans are self-triggered

Page 31

Performance evaluation

0

50

100

150

200

250

10×10 12x12 14x14 16×16 18x18 20×20

La
te

n
cy

 (
m

s)

Network Size

Latency vs Network Size

50

60

70

80

90

100

110

10×10 12x12 14x14 16×16 18x18 20×20

C
o

m
p

le
ti

o
n

 R
at

e
(%

)

Network Size

Completion Rate vs Network Size

5000

10000

15000

20000

25000

10×10 12x12 14x14 16×16 18x18 20×20

Th
ro

u
gh

p
u

t
(B

/s
)

Network Size

Throughput vs Network Size expected pkt/s=100,
baseline
expected pkt/s=100,
proposed
expected pkt/s=70,
baseline
expected pkt/s=70,
proposed
expected pkt/s=40,
baseline
expected pkt/s=40,
proposed

With larger
network size..

latency increases
due to more hops
per packet

latency increases
due to more hops
per packet

lower completion
rate due to more
hops per packet

lower completion
rate due to more
hops per packet

slightly lower throughput,
since packets are more
prone to be dropped

slightly lower throughput,
since packets are more
prone to be dropped

Page 33

Performance evaluation

0

50

100

150

200

250

10×10 12x12 14x14 16×16 18x18 20×20

La
te

n
cy

 (
m

s)

Network Size

Latency vs Network Size

50

60

70

80

90

100

110

10×10 12x12 14x14 16×16 18x18 20×20

C
o

m
p

le
ti

o
n

 R
at

e
(%

)

Network Size

Completion Rate vs Network Size

5000

10000

15000

20000

25000

10×10 12x12 14x14 16×16 18x18 20×20

Th
ro

u
gh

p
u

t
(B

/s
)

Network Size

Throughput vs Network Size expected pkt/s=100,
baseline
expected pkt/s=100,
proposed
expected pkt/s=70,
baseline
expected pkt/s=70,
proposed
expected pkt/s=40,
baseline
expected pkt/s=40,
proposed

With the proposed
scheme…

introduces constant
latency (~25ms), due to
the overhead of
encryption/decryption.

introduces constant
latency (~25ms), due to
the overhead of
encryption/decryption.

introduces almost
negligible impact on
the completion rate

introduces almost
negligible impact on
the completion rate

introduces almost
negligible impact on
the throughput

introduces almost
negligible impact on
the throughput

Outline

• Summary

Page 35

Summary

• Problem:
• Hardware Trojans are malicious and covert changes to the circuits

which are difficult to detect during testing.
• In IoT, hardware Trojans in different nodes may mutually trigger each

other to cause catastrophe.

• Proposed framework:
• Goal: prevent hardware Trojans in IoT from mutually triggering.
• Method combines:

• message encryption
• node mutual auditing
• node vendor diversity

• Simulation results show that the proposed scheme:
• Prevents hardware Trojans from mutually triggering each other.
• Introduces a constant (~25ms) latency to each packet regardless of

the network size and traffic volume.

