
A Mutual Auditing Framework to Protect 
IoT against Hardware Trojans

Chen Liu, Patrick Cronin, and Chengmo Yang

10/03/2016

Page 1



Page 2

Outline

• Hardware Trojan in IoT

• Proposed Trojan detection scheme

• Simulation results

• Summary
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Unwanted malicious circuit

Difficult to detect during testing:
1. Inserted at hard-to-detect place
2. May lack of golden model
3. May be hibernated

Difficult to detect during testing:
1. Inserted at hard-to-detect place
2. May lack of golden model
3. May be hibernated

Product with hardware Trojan sold to the customer…
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A Hardware Trojan
may…
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Hardware Trojans
in a network may…
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Internet of Things (IoT)

NodesNodes ServersServers

Wireless 

communication

Wireless 

communication
Trojans?Trojans?
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An active Trojan may trigger the hibernated ones by 
sending triggering messages
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Fault tolerance 
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Problem to solve:  hardware Trojan collusion in IoT

Previous hardware Trojan 
countermeasures [1,2,3] may detect 

single Trojan but not Trojan collusion

Previous hardware Trojan 
countermeasures [1,2,3] may detect 

single Trojan but not Trojan collusion

Why difficult?Why difficult?

[1] M. Banga and M. S. Hsiao, “A Novel Sustained Vector Technique for the Detection of Hardware Trojans”
[2] S. Bhunia, M.S. Hsiao, M. Banga, and S. Narasimhan. “Hardware Trojan Attacks: Threat Analysis and 

countermeasures”
[3] K. Xiao, X. Zhang, and M. Tehranipoor. “A Clock Sweeping Technique for Detecting Hardware Trojans 

Impacting Circuits Delay”
[4] X. Chen, K. Makki, K. Yen, and N. Pissinou, “Sensor network security: a survey”
[5] A. Wood and J. A. Stankovic, “Denial of service in sensor networks”
[6] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen, “Diagnosis of sensor networks”

Previous IoT security solutions target 
attacks from outside of the network 
[4,5,6] but not attacks from the inside

Previous IoT security solutions target 
attacks from outside of the network 
[4,5,6] but not attacks from the inside

Our goal: prevent hardware Trojan in IoT from mutually triggering
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• Proposed Trojan detection scheme
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Our goal: prevent hardware Trojan in IoT from mutually triggering

Our method: 

Message encryptionMessage encryption

Mutual auditingMutual auditing Vendor diversityVendor diversity
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Each node is assigned a 
unique cryptography key
Each node is assigned a 

unique cryptography key

Each message should 
be encrypted with 

symmetric encryption

Each message should 
be encrypted with 

symmetric encryption

Cryptography shuffles message, including the Trojan trigger.

MessageMessage
ENCENC DECDEC

Encrypted
message

Encrypted
message

Cannot 
decrypt!
Cannot 

decrypt!trigger

Encrypted
message

Encrypted
message

Encryption to shuffle Trojan trigger
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Have 
Trojan?

Have 
Trojan?

Y

Encrypt the 
message?

Encrypt the 
message?

N Send trigger in 
plaintext

Send trigger in 
plaintext

Y

With 
correct key

With 
correct key

N Send trigger with 
wrong encryption key

Send trigger with 
wrong encryption key

Y
Send trigger with 

correct encryption key
Send trigger with 

correct encryption key
Trojan trigger being shuffledTrojan trigger being shuffled

How to 
ensure correct 

encryption?

How to 
ensure correct 

encryption?

Message tampered 
by routing nodes

Message tampered 
by routing nodes

HOWEVER, encryption by itself cannot fully solve the problem!
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Let’s introduce
Mutual auditing 
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Node mutual auditing
First-hop auditing: each node is audited by its neighbor nodes

N1 has 
activated 

Trojan

N1 has 
activated 

Trojan

N1 sends 
unencrypted 

trigger message

N1 sends 
unencrypted 

trigger message

N2 performs audit 
and intercepts the 

message

N2 performs audit 
and intercepts the 

message N2 sends alarm 
message to the 

server

N2 sends alarm 
message to the 

server

Echo auditing: each auditor node is also audited by the node before

N7 sends a 
message, 

audited by N8

N7 sends a 
message, 

audited by N8

N8 broadcasts 
the audited 

message

N8 broadcasts 
the audited 

message

N7 audits the 
message sent 

by N8

N7 audits the 
message sent 

by N8

How to 
perform 
audit?

How to 
perform 
audit?
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Node mutual auditing
First-hop auditing: each node is audited by its neighbor nodes

Echo auditing:

Header Body

Header 1 0 1 1

audit bit ≤128 bits

Header Encrypted Body

FCSHeader Encrypted Body

Message sender: insert 
pre-defined audit bits

Auditor: check if the audit 
bits are valid

Frame check sequence 
– for fault tolerance

For 128-bit 
AES, every 

block is 
encrypted

For 128-bit 
AES, every 

block is 
encrypted

FCSHeader Encrypted Body

Header Encrypted Body

Header 1 0 1 1
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Node mutual auditing
First-hop auditing: each node is audited by its neighbor nodes

Echo auditing: 

Header Body

Header 1 0 1 1

audit bit ≤128 bits

Header Encrypted Body

FCSHeader Encrypted Body

Message sender: insert 
pre-defined audit bits

Auditor: check if the audit 
bits are valid

Frame check sequence 
– for fault tolerance

For 128-bit 
AES, every 

block is 
encrypted

For 128-bit 
AES, every 

block is 
encrypted

FCSHeader Encrypted Body

Header Encrypted Body

Header #(!&$*!&)!*)@!

(no encryption or 
with wrong key)
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Node mutual auditing
First-hop auditing:

Echo auditing: each auditor node is also audited by the message sender

Encrypted
message

Encrypted
message

Sender Firs-hop 
Auditor

buffer

Encrypted
message

Encrypted
message

audi
ting
audi
ting

Encrypted
message

Encrypted
message

=?=?
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Security analysis for a node

Have 
Trojan?

Have 
Trojan?

N
All audits passedAll audits passed No false negative

Y

Auditee 
secure?
Auditee 
secure?

Tamper the message 
audited

Tamper the message 
audited

N
Fails echo auditingFails echo auditing

Y

Encrypt the 
message?

Encrypt the 
message?

N Send trigger in 
plaintext

Send trigger in 
plaintext

Fails first-hop 
auditing

Fails first-hop 
auditing

Y

With 
correct key

With 
correct key

N Send trigger with 
wrong encryption key

Send trigger with 
wrong encryption key

Fails first-hop 
auditing

Fails first-hop 
auditing

Y
Send trigger with 

correct encryption key
Send trigger with 

correct encryption key
Trigger being shuffledTrigger being shuffled No false positive
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Overhead analysis

Regular IoT with message encryption:

……

Message generator k hops Server

1 × encryption 1 × decryption

……

Message generator k hops Server

1 × encryption 1 × decryption

Proposed scheme:

1 × decryption

First-hop 
auditing
First-hop 
auditing

k × comparison

Echo auditingEcho auditing

In parallel with 
message forwarding, 

does not add any 
delay

In parallel with 
message forwarding, 

does not add any 
delay
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How to prevent 
auditor and auditee 

from collusion?
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Node vendor diversity
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Node vendor diversity – how many vendors?

Different 
vendors
Different 
vendors

Different 
triggers

Different 
triggers

Unable to 
mutually trigger

Unable to 
mutually trigger

One vendor per node = 100% secure = huge overhead
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Node vendor diversity – how many vendors?

Node routing mapNode routing map
Graph coloring 

algorithm
Graph coloring 

algorithm
Node vendor 

selection
Node vendor 

selection

Color of auditee ≠ Color of auditor Secure

Determining vendor of nodes through graph coloring 8 vendors 3 vendors
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• Simulation results
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Methodology

Parameters Values

Simulation tool NS-2

Network scale

network size 10 × 10 to 20 × 20

max bandwidth 100 MB/s

expected traffic 40 to 100 packets/s

Network 
parameters

packet size 200 B body + 78 B metadata

packet processing time 1 ms per hop

cryptography overhead 1 ms per 128 bits
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Security study by simulating Trojan activation

A hibernated Trojan 
can be either:

Self triggered with a probability of p per packet

Mutually triggered by successfully receiving and decoding 
triggering message sent by active Trojan from the same vendor
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In the baseline, almost 
all the Trojans are 
activated.

In the baseline, almost 
all the Trojans are 
activated.

With the proposed 
scheme, mutually 
triggering is eliminated

With the proposed 
scheme, mutually 
triggering is eliminated

With larger p, more 
Trojans are self-triggered
With larger p, more 
Trojans are self-triggered
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Performance evaluation
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With larger 
network size..

latency increases 
due to more hops 
per packet

latency increases 
due to more hops 
per packet

lower completion 
rate due to more 
hops per packet

lower completion 
rate due to more 
hops per packet

slightly lower throughput, 
since packets are more 
prone to be dropped

slightly lower throughput, 
since packets are more 
prone to be dropped
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Performance evaluation
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With the proposed 
scheme…

introduces constant 
latency (~25ms), due to 
the overhead of 
encryption/decryption.

introduces constant 
latency (~25ms), due to 
the overhead of 
encryption/decryption.

introduces almost 
negligible impact on 
the completion rate

introduces almost 
negligible impact on 
the completion rate

introduces almost 
negligible impact on 
the throughput

introduces almost 
negligible impact on 
the throughput
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Summary

• Problem:
• Hardware Trojans are malicious and covert changes to the circuits 

which are difficult to detect during testing.
• In IoT, hardware Trojans in different nodes may mutually trigger each 

other to cause catastrophe.

• Proposed framework:
• Goal: prevent hardware Trojans in IoT from mutually triggering.
• Method combines:  

• message encryption 
• node mutual auditing
• node vendor diversity

• Simulation results show that the proposed scheme:
• Prevents hardware Trojans from mutually triggering each other.
• Introduces a constant (~25ms) latency to each packet regardless of 

the network size and traffic volume.


