

A Mutual Auditing Framework to Protect IoT against Hardware Trojans

Chen Liu, Patrick Cronin, and Chengmo Yang 10/03/2016

Outline

- Hardware Trojan in IoT
- Proposed Trojan detection scheme
- Simulation results
- Summary

Hardware Trojan: malicious elements inserted in circuit

Page 4

Hardware Trojan: malicious elements inserted in circuit

A Hardware Trojan may...

Hardware Trojans in a network may...

Internet of Things (IoT)

Wireless communication

Entire network down in a short while

Fault tolerance does not work

Catastrophe

Why difficult? <

Problem to solve: hardware Trojan collusion in IoT

Previous hardware Trojan countermeasures ^[1,2,3] may detect single Trojan but not **Trojan collusion**

Our goal: prevent hardware Trojan in IoT from mutually triggering

- [1] M. Banga and M. S. Hsiao, "A Novel Sustained Vector Technique for the Detection of Hardware Trojans"
- [2] S. Bhunia, M.S. Hsiao, M. Banga, and S. Narasimhan. "Hardware Trojan Attacks: Threat Analysis and countermeasures"
- [3] K. Xiao, X. Zhang, and M. Tehranipoor. "A Clock Sweeping Technique for Detecting Hardware Trojans Impacting Circuits Delay"
- [4] X. Chen, K. Makki, K. Yen, and N. Pissinou, "Sensor network security: a survey"
- [5] A. Wood and J. A. Stankovic, "Denial of service in sensor networks"
- [6] C. Jaikaeo, C. Srisathapornphat, and C.-C. Shen, "Diagnosis of sensor networks"

Outline

- Hardware Trojan in IoT
- Proposed Trojan detection scheme
- Simulation results
- Summary

Our goal: prevent hardware Trojan in IoT from mutually triggering

Mutual auditing

Vendor diversity

Encryption to shuffle Trojan trigger

Cryptography shuffles message, including the Trojan trigger.

HOWEVER, encryption by itself cannot fully solve the problem!

Let's introduce Mutual auditing

First-hop auditing: each node is audited by its neighbor nodes

Echo auditing: each auditor node is also audited by the node before

First-hop auditing: each node is audited by its neighbor nodes

Echo auditing: each auditor node is also audited by the message sender

First-hop auditing: each node is audited by its neighbor nodes

Echo auditing: each auditor node is also audited by the message sender

First-hop auditing: each node is audited by its neighbor nodes

Echo auditing: each auditor node is also audited by the message sender

Security analysis for a node

Overhead analysis

Regular IoT with message encryption:

How to prevent auditor and auditee from collusion?

Node vendor diversity

Node vendor diversity – how many vendors? One vendor per node = 100% secure = huge overhead

Outline

- Hardware Trojan in IoT
- Proposed Trojan detection scheme
 - Message encryption
 - Mutual auditing
 - Vendor diversity
- Simulation results
- Summary

Methodology

Parameters		Values
Simulation tool		NS-2
Network scale	network size	10 × 10 to 20 × 20
	max bandwidth	100 MB/s
	expected traffic	40 to 100 packets/s
Network parameters	packet size	200 B body + 78 B metadata
	packet processing time	1 ms per hop
	cryptography overhead	1 ms per 128 bits

Security study by simulating Trojan activation

Self triggered with a probability of *p* per packet

A hibernated Trojan can be either:

Mutually triggered by successfully receiving and decoding triggering message sent by active Trojan from the same vendor

Outline

- Hardware Trojan in IoT
- Proposed Trojan detection scheme
- Simulation results
- Summary

Summary

- Problem:
 - Hardware Trojans are malicious and covert changes to the circuits which are difficult to detect during testing.
 - In IoT, hardware Trojans in different nodes may mutually trigger each other to cause catastrophe.
- Proposed framework:
 - Goal: prevent hardware Trojans in IoT from mutually triggering.
 - Method combines:
 - message encryption
 - node mutual auditing
 - node vendor diversity
- Simulation results show that the proposed scheme:
 - Prevents hardware Trojans from mutually triggering each other.
 - Introduces a constant (~25ms) latency to each packet regardless of the network size and traffic volume.