
Simultaneous Template Optimization and Mask Assignment for DSA with Multiple Patterning

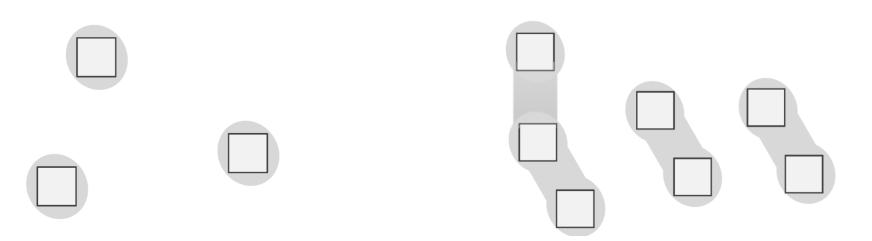
Jian Kuang, Junjie Ye, Evangeline F.Y. Young

Department of Computer Science and Engineering

The Chinese University of Hong Kong

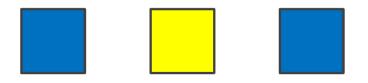
香港中文大學

Outline


- □ Introduction to DSA & Multiple Patterning
- Problem Formulation
- DSA with Double Patterning
- DSA with Triple Patterning
- Results & Conclusions

DSA

- Directed Self-Assembly
- contact/via manufacturing
- promising Next Generation Lithography for 10nm


DSA

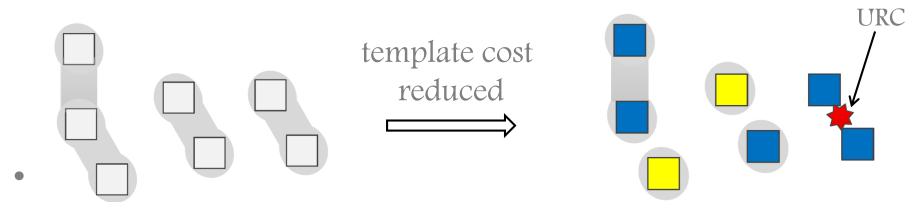
- guiding templates are needed to form the vias (contacts) correctly
- single-hole template v.s. multiple-hole template
- costs of templates. # of holes, irregular shape, distance

Multiple patterning

- divide the features into multiple masks
- coloring problem

DSA + multiple patterning

- Step 1. multiple masks to print templates
- Step 2: templates to guide the DSA process


DSA + multiple patterning

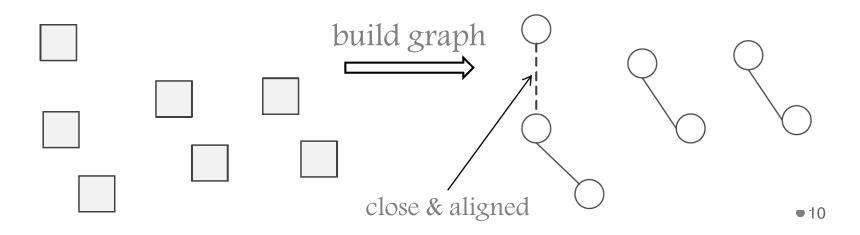
- for two vias within a *threshold–distance*
 - on different masks

• or

• on the same mask & grouped (in the same template)

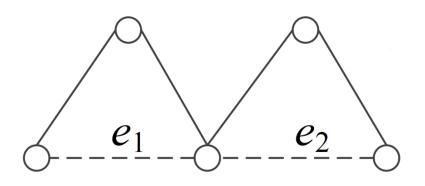
• otherwise, an UnResolved Conflict (URC) occurs

DSA + multiple patterning


- DSA with double patterning (2 masks)
- DSA with triple patterning (3 masks)
- simultaneously perform grouping (into the same template) and mask assignment

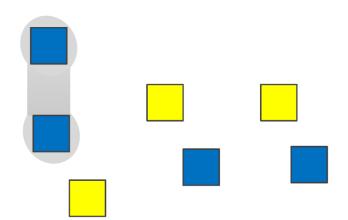
Outline

- □ Introduction to DSA & Multiple Patterning
- Problem Formulation
- DSA with Double Patterning
- DSA with Triple Patterning
- Results & Conclusions


Conflict graph *G*(*V*, *Eg*∪*En*)

- nodes: vias (V)
- edges: inter-distance < threshold</p>
 - dash edges: grouping edges (E_g)
 - two vias can be grouped (into the same template)
 - only horizontally/vertically aligned vias can be grouped
 - solid edges : non-grouping edges (E_n)

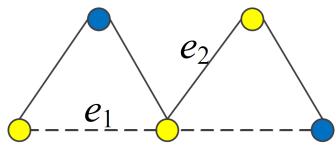
Incompatible grouping


- a set of grouping edges are incompatible if they cannot be used for grouping at the same time
- when max_template_size = 2 (single-hole or 2-hole templates only), any adjacent grouping edges are incompatible

• e_1 and e_2 are incompatible

Problem definition

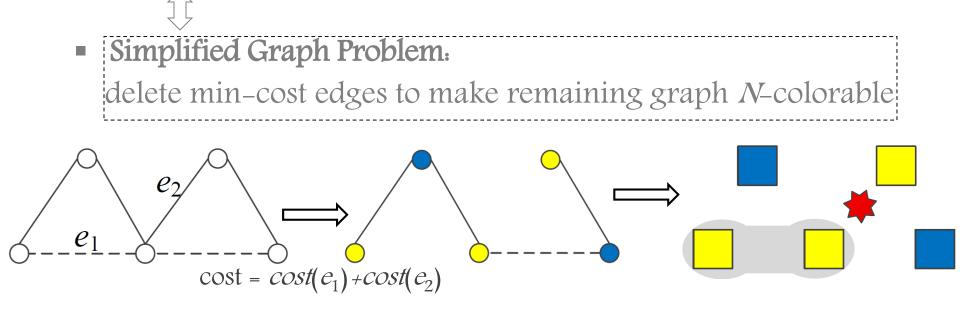
- Given a layout of contacts/vias and *N*masks, assign the features to different masks and group some of the features
- such that
 - no incompatible groupings happen
 - minimize # of URCs (unresolved conflicts)
 - minimize total cost of the used DSA templates



Outline

- □ Introduction to DSA & Multiple Patterning
- □ Problem Formulation
- DSA with Double Patterning
- DSA with Triple Patterning
- Results & Conclusions

Simplified graph problem


- $G(V, E_g \cup E_n)$ $cost(e) = \{ \begin{array}{c} Template_cost(e), if e \in \text{grouping} \\ URCcost, if e \notin \text{grouping} \end{array} \}$
- set edge cost ←
- set incompatible constraints
- *N*-color (2 or 3-color) graph and minimize cost of invalid edges (edges whose end-nodes have the same color)

 $cost = cost(e_1) + cost(e_2)$

Simplified graph problem

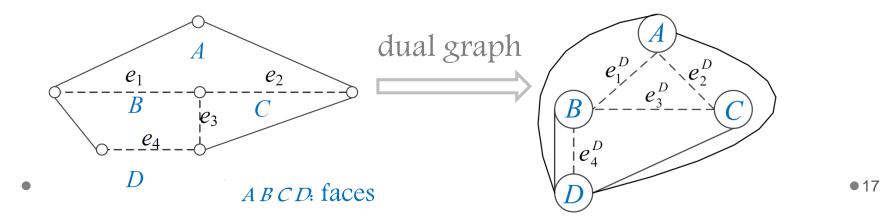
• *N*-color (2 or 3-color) graph and minimize cost of invalid edges

- If a grouping edge (*a,b*) is removed. *a* and *b* are grouped
- If a non-grouping edge (*a,b*) is removed. *a* and *b* has a URC

Dividing conflict graph

- identify *bridges, independent components...* to divide conflict graph into subgraphs
- in highly dense layout, more than 99.9% of the subgraphs are planar
- first solve planar subgraphs
- non-planar graphs can be modified to planar
- first assume max_template_size = 2

Exact method for Simplified Graph Problem


2-colorable

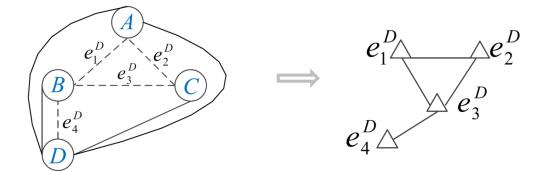
Constrained Edge Deletion Bipartite Problem

a graph is 2-colorable iff no odd cycle

Constrained Odd Vertex Pairing (OVP) on dual graph

OVP: remove edge to make graph w/o odd-degree vertex

Exact method for Simplified Graph Problem


- Constrained OVP
- a set of subproblems

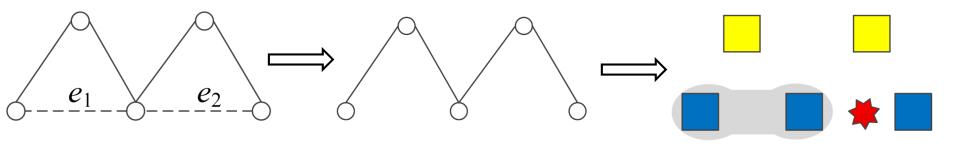
Л

each subproblem is OVP w/o constraints

Finding all subproblems

• edge constraint graph $\hat{G}(\hat{V}, \hat{E})$

• all subproblems \implies all maximal independent sets of \hat{G}

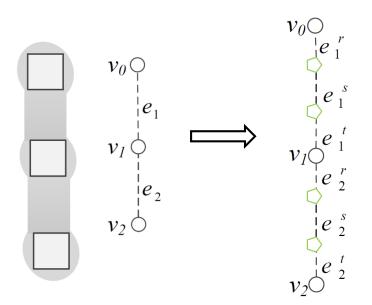

Maximal Independent Set: adding any element will make it not independent

Algorithm

- for each maximal independent set *I*
 - modify weights of grouping edges $\notin Ias \infty$
 - call OVP solver
 - edges $\notin I$ will not be removed
 - edges $\in I$ may or may not be removed
- it is guaranteed
 - removed grouping edges are always compatible
 - the minimum cost result returned by OVP solver is optimal

Accurate formulation on graph

- Simplified: If a grouping edge (a,b) is removed: *a* and *b* are grouped
- Accurate: If a grouping edge (*a,b*) is removed:
 a and *b* are grouped
 or *a* and *b* has a URC (2 vias that can be grouped can also have a URC)

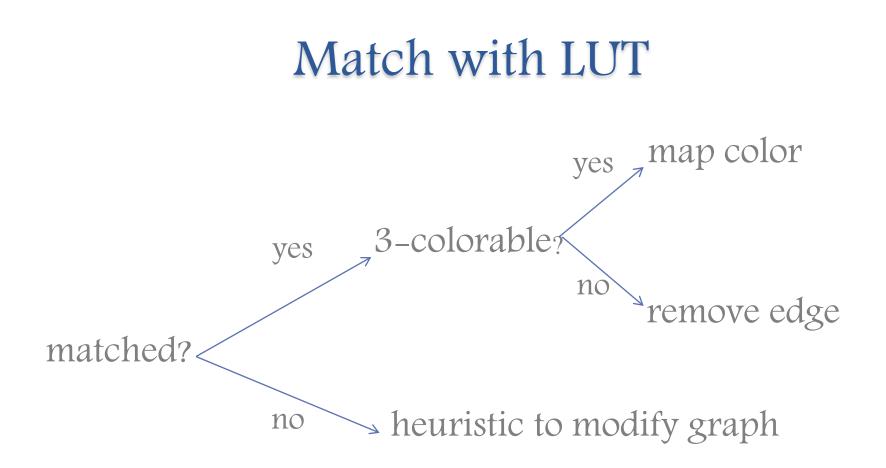


reduce from accurate to simplified by adding dummy nodes/edges

Extension to larger templates

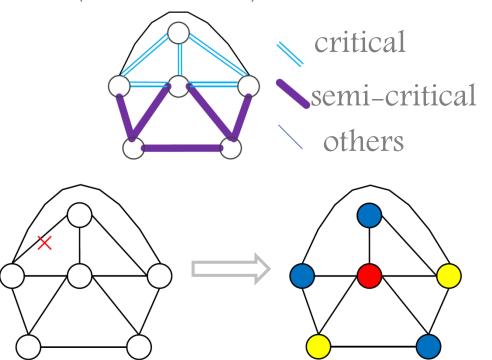
max_template_size > 2

- Problem: how to calculate cost of larger templates accurately?
- Solution: add dummy nodes and edges to graph

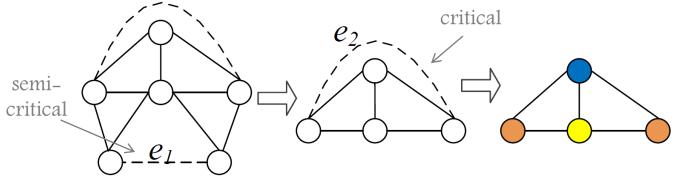


Outline

- □ Introduction to DSA & Multiple Patterning
- □ Problem Formulation
- DSA with Double Patterning
- DSA with Triple Patterning
- Results & Conclusions


LUT based method

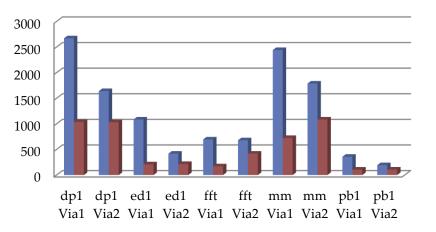
- Problem: remove edge to make graph 3-colorable
- divide the conflict graph to subgraphs
- build LUT of small graphs match


Critical /Semi-critical edge

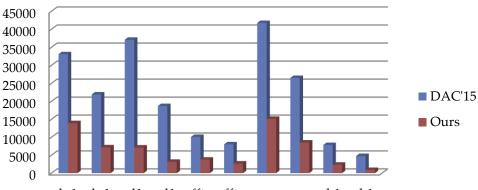
- for each non-3-colorable graph in LUT
 - critical edge. its removal make a graph 3-colorable
 - semi-critical edge: after removing it, there will be removable (degree < 3) nodes

Algorithm for removing edges

- *e*=min-cost critical edge
 - *e* is grouping edge.
 - return removing e (optimal)
 - *e* is non-grouping edge **or** *e*=null:
 - try to remove each **semi-critical** edge *se*
 - simplify graph and recursively call the algorithm
 - get a set of possible solutions and find min-cost one



•27

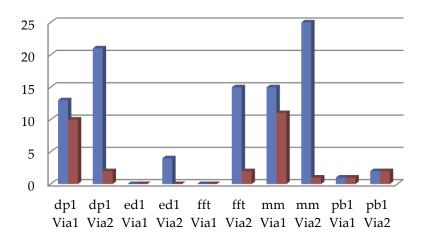

Outline

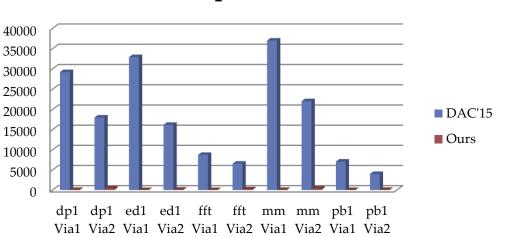
- □ Introduction to DSA & Multiple Patterning
- □ Problem Formulation
- DSA with Double Patterning
- DSA with Triple Patterning
- Results & Conclusions

Results for DSA + Double Patterning

URC

Template Cost


dp1 dp1 ed1 ed1 fft fft mm mm pb1 pb1 Via1 Via2 Via1 Via2 Via1 Via2 Via1 Via2 Via1 Via2


- target at 10nm Via1 and Via2
- significantly reduce URC# and Template Cost
- resolve 400,000 vias in 2.8 seconds
- verified by ILP: our result is optimal for planar graphs

Y. Badr, et al., "Mask assignment and synthesis of DSA-MP hybrid lithography for sub-7nm contacts/vias," in Proc. DAC, June 2015.

Results for DSA + Triple Patterning

URC#

Template Cost

- reduction on Template Cost is even larger
- resolve 400,000 vias within 3.6 seconds

Conclusions

- DSA + Double/Triple Patterning
- Co-optimize template cost and mask assignment
- Reduce manufacturing cost remarkably

Thanks!