Mask Optimization for Directed Self-Assembly Lithography: Inverse DSA and Inverse Lithography

Seongbo Shim and Youngsoo Shin

School of EE, KAIST

Outline

- Introduction
 - DSAL, Guide pattern (GP), Mask synthesis process
- Inverse DSA: Synthesizing ideal GP shape
 - Parameterizing GP, Synthesis algorithm
- Inverse lithography: Synthesizing GP mask image
 - Approximate cost gradient, Synthesis algorithm
- DSAL mask design with lithography variations
 - GP error tolerance, SRAF insertion
- Conclusion

Directed Self-Assembly (DSA)

Diblock copolymer (BCP)

DSA using Guide Patterns (GPs)

- Contact and via in sub 10-nm cannot be patterned using optical lithography
- In DSAL: Local contacts are grouped → GP is patterned through optical litho → contacts are patterned through DSA (2 step process)

DSA Lithography (DSAL)

DSAL Mask Synthesis

Mask synthesis for optical lithography

Mask synthesis for DSAL

Problem definition

- Input: A contact cluster
- Output: Ideal GP image
- **Objective**: Minimize max edge placement error (EPE)

Parameterizing GP

• Represent a GP as a function of a few geometry parameters

$$\mathcal{G}=f(\mathbf{g})=f(g_1,g_2,g_3,\cdots,g_n)$$

• Reduce complexity of inverse DSA

Algorithm

Experimental observations

- Inverse DSA is applied to each group of congruent clusters one by one
- Runtime increases with larger and more complex clusters

Groups of congruent clusters (GPs)

Algorithm

Input: a GP litho image \mathcal{L}_{in} Output: a GP mask image \mathcal{M}

L1:	$\mathcal{M} \leftarrow an initial GP mask image$						
L2:	$\mathcal{L} \leftarrow \text{Litho}_\text{Simulation}(\mathcal{M})$						
L3:	$C \leftarrow \operatorname{Cost}(\mathcal{L}_{in}, \mathcal{L})$						
L4:	repeat for max_iterations						
L5:	$\mathcal{M} \leftarrow \mathcal{M} - k \nabla C$						
L6:	$\mathcal{M} \leftarrow \text{Convert } \mathcal{M} \text{ to a binary mask}$						
L7:	$\mathcal{L} \ \leftarrow \text{Litho}_\text{Simulation}(\mathcal{M})$						
L8:	$C \leftarrow \operatorname{Cost}(\mathcal{L}_{in}, \mathcal{L})$						
L9:	if C increases OR $ \nabla C \leq \epsilon$ then						
L10:	Roll back \mathcal{M} ; exit loop						
L11:	$\mathbf{return}\; \mathcal{M}$						

$$\nabla C = \left(\frac{\partial C}{\partial g_1}, \frac{\partial C}{\partial g_2}, \frac{\partial C}{\partial g_3}, \cdots, \frac{\partial C}{\partial g_n}\right)$$

Approximate cost gradient

• Calculation of ∇C

$$\frac{\partial C}{\partial g_i} = \sum_k |EPE'_k|^2 - \sum_k |EPE_k|^2$$

n times convolutions for n pixels

• Approximate ∇C

 $\frac{\partial C}{\partial g_i} = \sum_k (\Delta EPE_k)(2EPE_k + \Delta EPE_k)$ $\Delta EPE_k = \frac{I'(x_k) - I(x_k)}{dI(x_k)/dx}$ From I(x) From I(x)

Much faster than convolution

Experiments: compare 2 methods

- Exact method: perform explicit litho simulations for computing abla C
- Our (approximate) method: 6X faster, comparable accuracy

	Exact method			Approximate method					
Layout	# Iter	Time	EPE _{max}	# Iter	Time	EPE _{max}	1		
		(hours)	(nm)		(hours)	(nm)			
Via 1	5	1	0.3	11	0.1	0.9			
Via 2	5	1.8	0.6	13	0.2	1.1			
Via 3	6	4.2	0.6	14	0.5	0.7			
Contact 1	7	4.8	0.5	18	0.4	0.8			
Contact 2	7	6.8	0.5	17	1.1	• 0.7			
Contact 3	10	16.7	0.7	25	2.9	more iterations &			
Average	6.7	5.9	0.5	16.3	0. <u></u>	0. longer runtime due to			
less accuracy of approx.									

COMPARISON OF EXACT AND APPROXIMATE INVERSE LITHOGRAPHY

2X more iterations

due to approximation

Mask Design with Litho Variations

- GP may have errors due to litho variations \rightarrow final contact error
- Contact error tolerance: DSA images should reside within some tolerance (e.g. ±10% contact size)
- **GP error tolerance**: GP litho images should reside within some tolerance

Mask Design with Litho Variations

DSAL SRAF

- **SRAF:** sub-resolution assist feature for constructive light interference
- **DSAL SRAF:** no problem of SRAF printing if no residue after DSA process
- # GPs with violation: 6.6% (no SRAF) \rightarrow 0% (with SRAF)

Conclusion

- Inverse DSA: Synthesizing ideal GP shape
 - Parameterizing GP
- Inverse lithography: Synthesizing GP mask image
 - Approximate cost gradient
- DSAL mask design with lithography variations
 - GP error tolerance, SRAF insertion

Thank you