Sub-threshold VLSI Logic Family Exploiting Unbalanced Pull-up/down Network, Logical Effort and Inverse-Narrow-Width Techniques

ID: 1S-8

MINGZHONG LI

State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau

20 January 2016

Background and Motivation

ID: 1S-8

Inverse-Narrow-Width Effect


```
ID: 1S-8
```

Unbalanced Network

(a) PDP, and (b) PDP improvement of a reference inverter (FO4 loading) with balanced (5/1) and unbalanced (2/1) networks vs. freq. @ 0.3 V

Balanced networks

- P/N ratio (typical): 5/1.
- Energy sub-optimized
- Full operating freq. range

- Unbalanced networks
 - P/N ratio (typical): < 5/1.
 - Energy-optimized
 - Low-to-moderate operating freq.

Single Stage Gates Design

Single Stage Gates Design

Power-delay product of (a) NAND3, (b) NOR3 with balanced and unbalanced network vs. freq. @ 0.3 V
100 times Monte-Carlo simulation of (c) NAND3; (d) NOR3 for delay characterization @ 0.3 V

Multi-stage Gates Design

Measurement Results

Normalized energy/cycle with inputs (a) ECG signal; (b) random signal (Black dots indicate the optimum points)

Benchmark

	This with 0.45V .lib	Work with 0.6V .lib	[1] TCASII'12	[2] VLSI'07	[3] JSSC'10	[4] JSSC'10
FIR Type	14-tap, 8-bit		30-tap, 8-bit	8-tap, 8-bit	14-tap, 8-bit	8-tap, 8-bit
Technology	0.18-µm		0.13-µm	0.13-µm	0.13-µm	90-nm
Optimum V _{DD} (V)	0.31	0.39	0.35	0.2	0.27	0.29
Freq. (Hz)	100k	100k	29k	12k	20M	148k
Energy/Tap (pJ)	0.02735	0.03568	1.1	1.19	1.11	0.6275
Power (nW)	38.29	49.95	32	114	310,000	742.96
FoM*	0.4273	0.5575	0.57	18.55	17.37	9.80
Area/Channel (mm ²)	0.053	0.049	0.058	1.54	0.38	N/A

*FIR FoM = power(nW)/freq.(MHz)/# of taps/input bit length/coefficient bit length

- [1] A. Klinefelter, et. al., "A programmable 34 nW/channel sub-threshold signal band power extractor on a body sensor node SoC," *IEEE Trans. on Circuits and Systems II*, vol. 59, no. 12, pp. 937-941, Dec. 2012.
- [2] H. Myeong-Eun, et. al., "An 85 mV 40 nW process-tolerant subthreshold 8 x 8 FIR filter in 130 nm Technology," in *Proc. IEEE Symp. VLSI Circuits VLSI '07*, pp. 154-155, Jun. 2007.
- [3] W.-H. Ma, et. al., "187 MHz subthreshold-supply charge-recovery FIR," *IEEE J. Solid-State Circuits*, vol. 45, no. 4, pp. 793–803, Apr. 2010.
- [4] I. J. Chang, et. al., "Exploring asynchronous design techniques for process-tolerant and energy-efficient subthreshold operation," *IEEE J. Solid-State Circuits*, vol. 45, no. 2, pp. 401-410, 2010.

Conclusion

- 1. Unbalanced pull-up/down networks and logical effort are applied to realized a sub-threshold VLSI logic family for biomedical applications.
- 2. Three 14-tap 8-bit FIR filters were designed and measured according to different liberty timing files.
- 3. The achieved FoMs at the minimum energy operating points for the 0.45 and 0.6-V library designs were 0.4273 (at 0.31 V) and 0.5575 (at 0.39 V) which compared favorably with the state-of-the-art F.I.R. filter designs.