
Automatic Abstraction Refinement
of Transition Relation for PDR

Kuan Fan, Ming-Jen Yang,

Chung-Yang (Ric) Huang

2016.1.26

Outline

• Introduction

– Property Directed Reachability

– Abstraction

• The Proposed Method

• Experimental Results

• Conclusion

Introduction

Property Directed Reachability

• PDR1 aka IC32, is a SAT-based model checking
algorithm developed by Aaron Bradley in 2011.

• IC3 won the 3rd place in HWMCC’10 and only
lost, by a narrow margin, to two mature
engines (ABC and PdTRAV)

• Best single engine algorithm

1N. Ee ́n, A. Mishchenko, R. Brayton: Efficient Implementation of Property Directed Reachability (FMCAD’11)
2A. R. Bradely, SAT-based model checking without unrolling (VMCAI’11)

PDR: The Big Picture

• Transition system: M = (V, S, Init(S), Tr(V, S, S’)),

Invariant property: P

• i-step over-approximation sets of clauses: F0, F1, ...,
Fk

• Five invariants:
1. F0 = Init

2. Fi ⇒ Fi+1 for 0 ≤ i ≤ k-1

3. Fi ⋀ Tr ⇒ Fi+1 for 0 ≤ i ≤ k-1

4. Fi ⊇ Fi+1, as sets of clauses. for 0 ≤ i ≤ k-1

5. Fi ⇒ P for 0 ≤ i ≤ k

1N. Ee ́n, A. Mishchenko, R. Brayton: Efficient Implementation of Property Directed Reachability
(FMCAD’11)

PDR: The Big Picture

• Transition system: M = (V, S, Init(S), Tr(V, S, S’)),

Invariant property: P

• i-step over-approximation sets of clauses: F0, F1, ...,
Fk

• Termination criteria:

– A counterexample is found.

– When ∃i ≤ k. Fi = Fi+1. Then:
1. Init ⇒ Fi

2. Fi ⋀ Tr ⇒ Fi

3. Fi ⇒ P

PDR in The State Space

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

I0

!P

F1

F2

F3

PDR in The State Space

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

I0

!P

F1

F2

= F4F3

PDR in The State Space

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

I0

!P
F3

F2

F1

PDR in The State Space

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

I0

!P

F2

F1

F3 != F4

Need F5 F6…

Abstraction of Latch Variable

I0

!P

F2

F1

F3 != F4

Need F5 F6…

• i-step over-over-approximation sets of clauses:
F0’, F1’, ..., Fk’

Abstraction of Latch Variable

• i-step over-over-approximation sets of clauses:
F0’, F1’, ..., Fk’

I0

!P
F3

F1’
I0

F1

F2’F2

F3’= F4’

Abstraction of Transition Relation

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

I0

!P

F2

F1

F3 != F4

Need F5 F6…

Abstraction of Transition Relation

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

F2

F1

Abstraction of Transition Relation

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

F2

F1

Abstraction of Transition Relation

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

F2

F1

Abstraction of Transition Relation

• i-step over-approximation sets of clauses: F0,

F1, ..., Fk

F2

F1

F2”

Abstraction of Transition Relation

I0

!P

F2

F1

F3

Need F5 F6…

F1”

F2”
F3”= F4”

• i-step over-over-approximation sets of clauses:
F0”, F1”, ..., Fk”

Previous Works

• IC3-Guided Abstraction1

• Lazy Abstraction2

• Major difference:
– flop-level abstraction & gate-

level abstraction

– Heuristics to handle
counterexamples

1Jason Baumgartner, Alexander Ivrii, Arie Matsliah, and Hari Mony. Ic3- guided abstraction.
(FMCAD’12)
2Yakir Vizel, Orna Grumberg, and Sharon Shoham. Lazy abstraction and sat-based reachability
in hardware model checking. (FMCAD’12)

Localization Abstraction

f

Concrete Circuit A

Abstract Circuit A’

Granularity of Abstraction

• Flop-level abstraction

Granularity of Abstraction

• Gate-level abstraction

Priority-based Abstraction Refinement1

1Alan Mishchenko et al.: Variable time-frame abstraction(IWLS’12)

0

1

2

3

Priority: smaller number
represents higher priority

1 3

1

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails.

Rules of priority propagation:

1 1 1 0 0 0
high low

low

high low high low

high

low

highlow

high

PDR: Program Flow

BlockBlock
PropagatePropagate

GLA: a Gate-level, Hybrid Approach1

Initial abstraction A’Initial abstraction A’

Is Cex concrete ?Is Cex concrete ?

Add flops/gates to A’Add flops/gates to A’

Cex

No

True Cex

Proved
Safe

Unsafe

BMC A’ at depth kBMC A’ at depth k

Model check A’Model check A’

No Cex

k = k+1

A’ = UNSAT core of
BMC

A’ = UNSAT core of
BMC

25

1Alan Mishchenko et al. Gate-level abstraction revisited(DATE’13)

Priority-based
abstraction refinement

Priority-based
abstraction refinement

Ga

A’ = A’∪ Ga

Mark gates Ga in solver
A’ = A’∪ Ga

Mark gates Ga in solver

A’ = Atmp∪ GrA’ = Atmp∪ Gr

Derive incremental
UNSAT core

Derive incremental
UNSAT core

RefineRefine
ShrinkShrink

Yes

The Proposed Method

The Proposed Method: An Overview

PropagatePropagate
BlockBlock

RefineRefine
ShrinkShrink

• Embed GLA-like abstraction refinement in
PDR

PDR

The Proposed Method: An Overview

• Embed GLA-like abstraction refinement in
PDR

The Proposed Method: An Overview

PropagatePropagate
BlockBlock

RefineRefine
ShrinkShrink

• Embed GLA-like abstraction refinement in
PDR

The Proposed Method

• Varying Abstract Model Ma of M:

Ma = (Va, Sa, Init, Tra(Va, Sa, Sa’))

w.r.t. abstraction A’

Invariant property: P

PropagatePropagate
BlockBlock

RefineRefine
ShrinkShrink

Ma Ma

Ma

Blocking and Refining Phase

• Using abstract transition relation Tra when
doing local reachability checks.

• Any Blocked cube is valid w.r.t. the concrete
model.

• May refine abstract counterexamples longer
than current depth k.

• Gates added now are remembered for later
incremental UNSAT cores extraction.

Shrinking Phase
• Remove superfluous logic added during Blocking and

Refining Phase
• Make sure five invariants still hold while changing Ma

to Ma :
1. F0 = Init

2. Fi ⇒ Fi+1

3. Fi ⋀ Tra ⇒ Fi+1

4. Fi ⊇ Fi+1, as sets of clauses.

5. Fi ⇒ P

PropagatePropagate BlockBlock

RefineRefineShrinkShrink
Ma Ma

Ma

Fi ⋀ Tra ⇒ Fi+1

Fi ⋀ Tra ⋀ ¬Fi+1

Experimental Results

Experiments

• The proposed method, called AbsPDR, was
implemented in ABC.

• We compared it with PDR as implemented in
ABC.

• Benchmark: HWMCC’13/14 benchmark suits,
392 instances

• Machine: Intel Xeon, 2.5 GHz freq; 32 GB mem.

• Timeout: 900 sec

Results Summary

• Focus: the impact of abstraction refinement to original
PDR(run pdr –m in ABC).

• AbsPDR refines only minimal(shortest) counterexamples.

• AbsPDR-a refines long counterexamples as PDR does.

• All other features used in AbsPDR(-a) are identical to PDR.

Runtime Comparison

Abstraction Results

the sizes of final abstractions are below 1%

Instances unsolved by PDR

Conclusion

Conclusion

• We present an efficient algorithm that
embeds GLA-like abstraction refinement in
PDR.

• Experimental results show that our approach
outperforms original PDR and complements it
in a large number of benchmark instances.

Thank You!

Localization Abstraction

f

Concrete Circuit A

Abstraction Circuit A’

Abstraction : How To?

• Counterexample-based abstraction (CBA/CEGAR):

– Start with one gates of property/state variable

– See if target hit

– Otherwise, Refine by adding more gates.

• Proof-based abstraction (PBA):

– Look at the UNSAT-core to further decide which
logic(gate) is necessary

• Hybrid method:

– Interleave CBA and PBA

Priority-based Abstraction Refinement1

1Alan Mishchenko et al.: Variable time-frame abstraction(IWLS’12)

0

1

2

3

Priority: smaller number
represents higher priority

1 3

1lowest priority needed to produce the value

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails.

Rules of priority propagation:

1 1 1 0 0 0
high low

low

high low high low

high

low

highlow

high

Priority-based Abstraction Refinement

0

1 1 1 0

0

0

PI 0 0 1 2

0 2

0

PPI

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails.

Initial priority: {PIs, Constant node,
FOs in time-frame 0} = 0
PPIs = 1 ~ n

Cex is concrete!

Priority: smaller number
represents higher priority

Priority-based Abstraction Refinement

0

1 1 1 0

0

0

PPI 1 2 3 4

2 4

2 Abstract Cex!

PPI

Added to abstraction

Goal: find a minimal subset of PPIs s.t. restricting them to
values in the given Cex implies the property fails.

Initial priority: {PIs, Constant node,
FOs in time-frame 0} = 0
PPIs = 1 ~ n

Priority: smaller number
represents higher priority

Shrinking Phase
• Remove superfluous logic added during Blocking and

Refining Phase
• Make sure five invariants still hold while changing Ma

to Ma :
1. F0 = Init

2. Fi ⇒ Fi+1

3. Fi ⋀ Tra ⇒ Fi+1

4. Fi ⊇ Fi+1, as sets of clauses.

5. Fi ⇒ P

PropagatePropagate BlockBlock

RefineRefineShrinkShrink
Ma Ma

Ma

Fi ⋀ Tra ⇒ Fi+1

Shrinking Phase

• Recall that an incremental UNSAT core is
recorded only in terms of those gates added in
current iteration k

• The gates included in previous iterations are
NEVER removed

• Extract incremental UNSAT cores:
– Gi = gates included in UNSATCore(Fi ⋀ Tra ⋀

¬Fi+1) for 0 ≤ i ≤ k-1

– Gk = gates included in UNSATCore(Fk ⋀ ¬P)

– Gr = G0 ∪ G1 ∪ ... ∪ Gk

– A’’ = remove gates do not exist in Gr from A’

