
A Complete Approach to 
Unreachable State

Diagnosability via Property 
Directed Reachability

Ryan Berryhill

Andreas Veneris

University of Toronto



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Motivation

• Functional verification can take up to 70% of 
the design effort, 60% of which is debugging

• Many errors manifest themselves with an 
error trace

• Traditional SAT-based debugging can be 
applied to accelerate the debugging process

University of Toronto



Motivation

• Safety properties
• The design can never reach a bad state

• On failure, an error trace is returned

• Liveness properties
• The design is capable of reaching a state

• On failure, no error trace can possibly exist

• Without an error trace, traditional automated 
debugging cannot be applied

University of Toronto



Motivation

• Techniques for debugging this type of liveness 
property exist
• Approximation-based and incomplete

• We propose a PDR-based debugging 
technique for this type of liveness property
• Complete and exact: returns every solution

• Possible to efficiently answer the question:

University of Toronto

How do I make the design reach this state?How do I make the design reach this state?



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Background

• SAT-based debugging [Smith et. al TCAD ‘05]
• Using an error-trace, finds all locations that 

can be changed to correct the circuit’s 
behavior

• Unroll the circuit as an ILA, insert MUXes at 
the output of each gate

University of Toronto

D Q

x1
x2

y
d

• E.g. for the following circuit and 
two-cycle counter-example

0
0
0

1
0

y1 y2

1

Cycle 2Cycle 1



Background

• SAT-based debugging [Smith et. al TCAD ‘05]
• Using an error-trace, finds all locations that 

can be changed to correct the circuit’s 
behavior

• Unroll the circuit as an ILA, insert MUXes at 
the output of each gate

University of Toronto

D Q

x1
x2

y
d

• E.g. for the following circuit and 
two-cycle counter-example

s2
0

1
s1

0

1 s1

0

1

w1,1
w2,1

w1,2

0
0
0

1
0

y1d1 y2

1

Setting s1 = 1 makes the 
instance SAT

Cycle 2Cycle 1

0

1

w2,2

s2



Background

• Property-Directed Reachability [Bradley, 
VMCAII’11]
• Determines if a state is reachable or not

• Compute an over-approximation of the set of 
reachable states in each clock cycle

• Terminate when the over-approximation 
converges to an inductive invariant

• Inductive invariant: a set of states closed 
under the circuit’s transition relation

• We propose a technique leveraging PDR to 
debug unreachability without an error trace

University of Toronto



Background

• Approximation-based approach [Berryhill and 
Veneris, DATE’15]
• User sets a parameter K

• Use PDR to over-approximate the set of states 
reachable in K or fewer cycles

• Debug a state transition from the over-
approximation to the target state

University of Toronto



Background

• Solution set is not necessarily complete

• Finds all solutions that reach the target state:
• within (K+1) cycles; and

• one cycle after an already-reachable state

• We propose a technique based on PDR that is 
complete by nature
• No parameters to set

• Higher runtime (roughly 4-5x)

University of Toronto



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Unreachability Debugging

• Key idea: create a new transition relation in 
which the target is reachable if solutions exist
• Use a novel error model construction to 

perform the role of the debugging MUX

• Use PDR to determine the if the target is 
reachable

• The counter-example returned by PDR 
indicates a solution

• Result: All solutions are found, but runtime is 
typically higher than the approximation-based 
approach

University of Toronto



Unreachability Debugging

• Construct the enhanced transition relation
• Insert the error model at each suspect location

• If ei = 0 the circuit’s behavior is unaffected

• If ei = 1 the location is replaced by free 
variable wi

• The register output feeds back to its input
• The register assumes a value as part of the initial 

state assignment and maintains it forever

University of Toronto

D Q

FF

0

1

ei

li

wi
zi



Unreachability Debugging

• Construct initial state constraints
• Valid initial state of the circuit

• Exactly N active error-select registers
• Find solutions where N locations are simultaneously 

changed to correct the error

• N is the error cardinality

• For simplicity, we only consider N = 1

University of Toronto

D Q

FF

x1

x2

s1

l1

l2
D Q

FF

x1

x2

s1

e1
0

1
w1

e2
0

1
w2



Unreachability Debugging

• Execute PDR, using the target state as the 
unsafe state set

• If reachable, the active error-select register in 
the counter-example is a solution
• Update the initial state constraint to block the 

solution, run PDR again

• If unreachable, no solutions exist
• Terminate

University of Toronto



Unreachability Debugging

• From the initial state (s1 = 0) it is impossible 
to reach the target state (s1 = 1)

University of Toronto

D Q

FF

x1

x2

s1

e1
0

1
w1

e2
0

1
w2

D Q

FF

x1

x2

s1

l1

l2



D Q

FF

x1

x2

s1

e1
0

1
w1

e2
0

1
w2

D Q

FF

x1

x2

s1

l1

l2

Unreachability Debugging

• From the initial state (s1 = 0) it is impossible 
to reach the target state (s1 = 1)

• Setting e2 = 1 makes it reachable
• The AND gate is a solution

• Changing the AND to an OR indeed makes 
the target state reachable

University of Toronto



Unreachability Debugging

• From the initial state (s1 = 0) it is impossible 
to reach the target state (s1 = 1)

• Setting e1 = 1 does not make the target state 
reachable
• The OR gate is not a solution

University of Toronto

D Q

FF

x1

x2

s1

e1
0

1
w1

e2
0

1
w2



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Incremental Application of PDR

• PDR is called once for each solution found

• Each time, PDR is solving a very similar 
problem
• Same transition relation, same property

• One error-select register forced to 0

• Strictly fewer states are reachable
• Those in which ei = 1 are all unreachable

• All others are unaffected

University of Toronto

Reachable
Over-

Approximation



Incremental Application of PDR

• The reachable set after blocking is a subset of 
the reachable set before blocking
• The over-approximations remain valid

• Re-use the over-approximations of PDR from 
the previous run
• Gives an average 5.1x speedup

University of Toronto

Reachable
Over-

Approximation



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Experimental Results

University of Toronto

Approximate 
Approach (K = 50)

Initial Approach Incremental Approach

Design #sol %sol Time #sol Time #sol Time Speedup

mrisc_core 10 100 15.9 10 430 10 111 3.9x

deisgn1 4 29 16 14 128 14 21.7 5.9x

divider 1 1.9 1.5 53 2.2 53 1.2 1.8x

spi 40 100 19.0 40 598 40 76.6 7.8x

wb 247 95 38.7 261 9983 261 211 47.3x

usb_core 4 100 17.5 4 1065 4 492 2.2x

ac97_ctrl 10 56 1.4 18 44.8 18 16.8 2.7x

rsdecoder 40 100 371 - - 40 951 -

GEOMEAN 43 5.1x

Incremental and initial 
approaches find the 

same (complete) set of 
solutions in every case

Approximate approach 
finds 43% of the 

complete solution set

Approximate approach 
struggles to find many 

solutions on highly-
pipelined designs

Approximate approach 
often is able to find all of 

the solutions



Experimental Results

University of Toronto

0

50

100

150

200

250

300

mrisc_core design1 divider spi wb usb_core ac97_ctrl rsdecoder

So
lu

ti
o

n
s

Solutions Found for Both Approaches

Approximate Approach Proposed Approach

• On pipelined designs, the approximate 
approach may find a small subset of the 
solutions
• Finds solutions in the stage closest to error’s 

observation point



Experimental Results

University of Toronto

0

2

4

6

8

10

0 20 40 60 80 100

So
lu

ti
o

n
s 

Fo
u

n
d

Time(s)

Solutions Found vs. Time for Both Approaches (mrisc_core)

Unoptimized Optimized

• Both take the same amount of time to find one 
solution

• The optimized approach finds subsequent solutions 
much more quickly



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Future Work

• Efficient Suspect Selection [ISAIM’16]

• Key Idea: A location being a non-solution may 
imply other locations are also non-solutions
• Not a register defining the target state (e.g. locations 

other than s1); and

• Has only one fanout (e.g. l3, l2, l1); and

• Single fanout is a non-solution

• e.g. If l2 is not a solution, l1 is not either

University of Toronto

D Q

FF
x1
x2

s1

l2

l3

x3 l1



Future Work

• Apply unreachability debugging iteratively

• Start with a suspect set including
• Registers that define the target state (s1)

• Locations with multiple fanout

• Debug, “push back” through solutions
• Add fanins of solutions to the suspect set

University of Toronto

D Q

FF
x1
x2

s1

l2

l3

x3 l1



Construct New 
Suspect Set

Solutions 
Found?

Debug

Future Work

University of Toronto

Construct Initial 
Suspect Set

Yes

Terminate

D Q

FF
x1
x2

s1

l2

l3

x3 l1

No

Suspect
Suspect

Solution
Solution

SuspectNon-SolutionNon-Solution



Outline

• Motivation

• Background

• Unreachability Debugging

• Incremental Application of PDR

• Experimental Results

• Future Work

• Conclusion

University of Toronto



Conclusion

• Debugging unreachable states without an 
error trace
• Construct an enhanced model of the circuit

• Target state reachable if and only if solutions 
exist

• Use PDR to find traces that reach the target 
state thereby indicating solutions

• Complete and exact by nature
• Returns every solution in the design

• Future Work: Efficient suspect selection 

University of Toronto


