

Coupling
 Reverse Engineering and SAT to Tackle NP-Complete Arithmetic Circuitry Verification in O(\# of gates)

Easy-Logic Technology Ltd.

Outline

- Difficulty of SAT in Comparing Arithmetic Logic
- Formal Verification by Macro Level Function Checking
- Experimental Results
- Conclusion

Formal Verification

SAT Solver

Translate the circuit into a set of CNF clauses

Solve the CNF by SAT solver (MiniSat, Glucose, Lingeling, etc)

Verification \& Internal equivalence

- Equivalence checkers can perform extremely well if the two designs to be compared contain a high degree of structural similarity, which means that the two circuits contain a lot of internal equivalences.

Verification \& Internal equivalence

- check equivalence within functional blocks separated by (internal) equivalent points
- Assign CNF variables one by one
- Propagate new assignment and see if there is any conflict

Verification \& Internal equivalence

- In other words, if no internal equivalences exist, verification can become impossible even for small cases.

A 4×4 Wallace Tree Multiplier

16 partial products
12 adders

A 4×4 Booth Multiplier

10 partial products, 2 constants
10 adders
5 half adders, 5 full adders

Partial Products Difference

Multiplier and Adder

$(A+B) X C$

$A X C+B X C$

Difficulties of Verify Multipliers

- BDD: requires $O\left(2^{n}\right)$ memory to represent an n bit multiplier [1]
- SAT: requires $O\left(2^{n}\right)$ branches or decisions [2]
[1] Bryant, Randal E. "Graph-based algorithms for Boolean function manipulation." Computers, IEEE Transactions on 100.8 (1986): 677-691. [2] Järvisalo, Matti. "Equivalence checking multiplier designs (2007) SAT Competition 2007 benchmark description."

SAT Performance of Verifying Two Different Multipliers*

Solving time for-a 64 -bit molthiplier?

Results for Satz 2.15
Results for Minisat 2.0 with preprocessing

* Järvisalo, Matti. "Equivalence checking multiplier designs (2007) SAT Competition 2007 benchmark description."

Outline

- Difficulty of SAT in Comparing Arithmetic Logic
- Formal Verification by Macro Level Function Checking
- Experimental Results
- Conclusion

Reverse Engineering

- Though it's difficult to verify a multiplier from pure logic view, we can recognize it from some intrinsic features.
- We propose a reverse engineering scheme which can map1-bit adder arithmetic macros including adders, multipliers (Wallace tree or Booth), and multiplexers.

Solve $f=g$?

Our Flow

8-bit Multiplier Structure

Steps of identify a multiplier macro:

1. Construct adder-trees
2. Construct adder-forest by connecting trees Use carries
3. Determine multiplier boundary

$$
\mathrm{O}_{15} \mathrm{O}_{14} \mathrm{O}_{13} \mathrm{O}_{12} \mathrm{O}_{11} \mathrm{O}_{10} \mathrm{O}_{9} \mathrm{O}_{8} \mathrm{O}_{7} \mathrm{O}_{6} \mathrm{O}_{5} \mathrm{O}_{4} \mathrm{O}_{3} \mathrm{O}_{2} \mathrm{O}_{1} \mathrm{O}_{0}
$$

Determine Multiplier Boundary

Operand Mapping

Booth Multiplier

- Also 1-bit adder based macro
- Different at partial products, adder tree and adder forest structure
- Mapping process similar to Wallace tree multiplier

Complexity of Mapping Multiplier

- Construct adder trees and forest: linear to circuit size
- Determine multiplier boundary: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ to $\mathrm{n}-$ bit multiplier

Formula Checking \& Normalization

- Choose some most common formula patterns.
- e.g. $a+b, a \times b,(a+b) \times c, a \times b+c \times d+e \times d$, $a+b+c \times d-e \times f, a \times b+c \ldots$
- Create a standard structure form for every chosen formula pattern
- e.g. use Wallace tree structure as the canonical form of $a \times b$
- Replace every macro by its pre-defined form

Outline

- Difficulty of SAT in Comparing Arithmetic Logic
- Formal Verification by Macro Level Function Checking
- Experimental Results
- Conclusion

Benchmark Information

Case	\#primitive gates	Contained arithmetic macros	Multiplier type	Multiplier size
ut1	280-1261	$(a+b) \times c ; a \times c+\mathrm{b} \times \mathrm{c}$	Wallace tree	$\left(6{ }^{*} 6\right)-(8 * 7)$
ut2	1197-1994	$a \times b$	Booth	$(16$ * 16) - (16 * 16)
ut3	2727-4226	$a \times b$	Booth	$(32$ * 32$)-(48$ * 48$)$
ut5	1025-2261	$a \times b$, MUX	Wallace tree	$(12$ * 12) - (12 * 12)
ut7	474-2301	(signed) $a \times b$	Booth; Wallace tree	(9*9)-(24 * 24)
ut8	1061-2308	(signed) $a \times b$	Booth; Wallace tree	(23*23) - ($24 * 24$)
ut13	697-2385	$a \times b$	Booth; Wallace tree	(11*11)-(17 * 17)
ut14	1402-3402	$a \times b$	Booth; Wallace tree	$(17 \times 17)-(19 * 17)$
ut15	851-3023	$a \times b$	Booth; Wallace tree	$(12 * 12)-(17 * 17)$
ut20	584-22600	$\begin{gathered} \text { (signed) } a \times b ; \\ a+b+c \times d-e \times f \end{gathered}$	Booth; Wallace tree	(10 * 10) - (45 * 45)
ut26	564-10383	$\begin{gathered} a \times b ; a \times b+c ; \\ a+b+c \times d+e \times f \end{gathered}$	Booth; Wallace tree	$(9 * 9)-(28 * 28)$
ut32	711-2480	(signed) $a \times b$	Booth; Wallace tree	$(10$ * 10) - (17 * 17)
ut36	2855-25489	MUX	*	*
ut41	1103-5463	$a \times b$	Booth; Wallace tree	$(13 * 13)-(30 * 30)$

Contest Results

CNF encoding time limit: 25s
SAT solving time limit: 100 s
cost $=4$ * CNF encoding time + SAT solving time

Comparison with Commercial Tools

Case \#circuits		Our results		Commercial tool X results		Commercial tool Y results	
		\#solved	Avg runtime (s)	\#solved	Avg runtime (s)	\#solved	Avg runtime (s)
ut1	13	13	0.3	13	7.1	13	64.6
ut2	13	13	0.9	13	1.4	4	3827.4
ut3	13	13	3.5	8	854.1	0	5000
ut5	13	13	0.4	13	41.9	13	5.1
ut7	13	13	1.0	13	36.8	13	60
ut8	13	13	1.2	9	301.2	13	854.2
ut13	13	13	0.4	12	704.4	10	1237.6
ut14	13	13	0.7	5	2361.4	2	4308.3
ut15	13	13	0.9	6	827.8	6	2967.2
ut20	13	11	4.1	3	1256.3	3	3867.1
ut26	13	13	1.2	5	1883.8	2	4175.5
ut32	13	13	0.7	6	1538.7	4	3506.3
ut36	13	3	11.7	3	104.9	3	3871.4
ut41	13	13	1.0	2	820.7	1	4530.3
total	182	170		111		87	
avg			2.0		767.2		2733.9
ratio	(1)	(33\%)	(1)	(1\%)	$331.3 \times$	(48\%)	1.58.3x

Some results I

benchmarks	\#primitive gates	our results	commercial tool results	description
ut1 \|testltest1	280	0.24	0.13	Compare $(A+B) \times C$ and $(A \times C)+(B \times C)$
ut1 \|testltest2	415	0.39	0.18	
ut1 ltestltest3	731	0.26	4.95	
ut1 1testltest4	878	0.33	6.24	
ut1 1testltest5	1005	0.36	11.06	
ut1 1testltest6	1108	0.39	10.22	
ut1 \|testltest7	1187	0.42	9.68	
ut1 \|testltest8	1256	0.45	14.97	
ut1 \|testltest9	1261	0.45	9.65	
ut1 \testltest10	972	0.45	6.24	
total	9093	3.74	73	

Some results II

benchmarks	\#primitive gates	our results	commercial tool results	description
ut41 \testltest1	1444	0.52	2564.69	Compare Wallace tree $A \times B$ and Booth $A \times B$
ut41 \testltest2	1434	1.81	>2056.73	
ut41 \testltest3	2258	0.55	>1239.85	
ut41 \testltest4	2734	0.76	>705.83	
ut41 \testltest5	2997	0.94	>147.21	
ut41 \testltest6	3254	1.02	>370.6	
ut41 \testltest7	3830	1.13	>204.49	
ut41 \testltest8	4139	1.3	>432.46	
ut41 \testltest9	5108	1.4	>312.36	
ut41 \testltest10	5463	1.71	> 351.88	
total	32661	11.14	>8386	

* \mathbf{X} means the tool aborted at this timing point and cannot give the result

Outline

- A Coupling Area Reduction Technique Applying ODC Shifting
- Boosting Formal Verification by Macro Level Functional Checking
- Conclusion

Outline

- Difficulty of SAT in Comparing Arithmetic Logic
- Formal Verification by Macro Level Function Checking
- Experimental Results
- Conclusion

Conclusion

- We experiment a new reverse engineering and logic synthesis assisted verification methodology.
- Complicated arithmetic logics and their formulae are extracted to create internal equivalence for SAT solvers to avoid being trapped in certain exponential runs.
- This approach is orders of magnitude faster than any other known approach.
- It would be interesting to study if this Complementary Greedy Coupling scheme can also be useful for other NP-complete problems.

Thank You

