Coupling
Reverse Engineering and SAT
to Tackle NP-Complete
Arithmetic Circuitry Verification
iIn O(# of gates)

Easy-Logic Technology Ltd.

Outline

« Difficulty of SAT in Comparing Arithmetic
Logic

- Formal Verification by Macro Level
Function Checking

- Experimental Results

« Conclusion

Formal Verification

iE
Ll
I

il
i)
gl
]
|

I
1l

Golden circuit Revised circuit

SAT Solver

Translate the circuit into a set of CNF clauses

Solve the CNF by SAT solver (MiniSat, Glucose, Lingeling, etc)

B

Verification & Internal equivalence

Equivalence checkers can perform extremely well if the
two designs to be compared contain a high degree of
structural similarity, which means that the two circuits

contain a lot of internal equivalences.

f, =9, => (z4,2,) are internal
g, equivalences

gs 94

Verification & Internal equivalence

- check equivalence within functional blocks
separated by (internal) equivalent points
— Assign CNF variables one by one

— Propagate new assignment and see if there is
any conflict

Verification & Internal equivalence

- In other words, if no internal equivalences
exist, verification can become impossible
even for small cases.

A 4 X4 \Wallace Tree Multiplier

pp2,2 pp3,1 pp2,1 pp3,0

16 partial products
12 adders
4 half adders, 8 full adders

pp0,3 pp1,2

04 03 02

A 4°X4 Booth Multiplier

10 partial products, 2 constants
10 adders
5 half adders, 5 full adders

pp0,4pp2,2 pp0,3 pp2,1 pp0,2 pp2,0

pp2,4

o7

Partial Products Difference

bj-1 a; a4 Qi bj

Wallace tree multiplier
partial product

Booth multiplier partial product

Multiplier and Adder

A C B C

4X4 4X4
Multiplier Multiplier

4-bit Adder

6X6
Multiplier

8-bit Adder

o)
(A+B)XC AXC+BXC

Difficulties of Verify Multipliers

- BDD: requires O(2") memory to represent an n-
bit multiplier [1]

- SAT: requires O(2") branches or decisions [2]

[1] Bryant, Randal E. "Graph-based algorithms for Boolean function
manipulation.” Computers, IEEE Transactions on 100.8 (1986): 677-691.
[2] Jarvisalo, Matti. "Equivalence checking multiplier designs (2007) SAT
Competition 2007 benchmark description."

B -

HMumlaer af branches

SAT Performance of Verifying
Two Different Multipliers®

Over 1020 et e

centuries!

Results for Satz 2.15

* Jarvisalo, Matti. "Equivalence checking multiplier designs (2007)
SAT Competition 2007 benchmark description."

Results for Minisat 2.0 with preprocessing

Outline

- Difficulty of SAT in Comparing Arithmetic
Logic

- Formal Verification by Macro Level
Function Checking

- Experimental Results

« Conclusion

Wallace tree
multiplier

Circuit 1

Wallace tree
multiplier

Circuit 2

Where are

the macros?

*Sizes are very large

Buried in a flatten design

Reverse Engineering

- Though it's difficult to verify a multiplier

from pure logic view, we can recognize it
from some intrinsic features.

- \We propose a reverse engineering
scheme which can map1-bit adder
arithmetic macros including adders,

multipliers (Wallace tree or Booth), and
multiplexers.

vy Reverse

Solve f=g ? %H@g% I'In
tracmg

“practical”
industrial circuits

Could be
exponential

Input netlist f and g

Our Flow . .

Preprocessing stage

tlist

Optimized netlist

8-bit Multiplier Structure

Steps of identify a multiplier macro:
1. Construct adder-trees

2. Construct adder-forest by connecting trees Use carries

3. Determine multiplier boundary

aibj _..:: @.
Tefaa
H)QQ::;:;:.

0150440430120410190g Og O7 Og O5 O4 O3 O, O4 O

Determine Multiplier Boundary

B:
Input
boundary
00000 O0CO

+) o o000 0060

015014 0130420410190g Og O7 Og O5 O4 O3 O, O4 O

Output
boundary

Operand Mapping

0110

AXB or BXA?

Al@..5]

< 1001

BIA.BH

PI:Pl, PI, Pl, PI,

Opesgathwsérdnotsy
vhkiakidgptinfethed

eft in fanin cone

Booth Multiplier

- Also 1-bit adder based macro

- Different at partial products, adder tree
and adder forest structure

- Mapping process similar to Wallace tree
multiplier

Complexity of Mapping Multiplier

» Construct adder trees and forest: linear to

circuit size

- Determine multiplier boundary: O(n?) to n-
bit multiplier

Formula Checking &
Normalization

« Choose some most common formula patterns.

- eg.at+b,axb,(a+b)Xc,axb+cxd+exd,
a+b+cxXd—eXf,axXxb+c...

Create a standard structure form for every
chosen formula pattern

-« e.g. use Wallace tree structure as the canonical form
ofaxb

* Replace every macro by its pre-defined form

Outline

- Difficulty of SAT in Comparing Arithmetic
Logic

- Formal Verification by Macro Level
Function Checking

- Experimental Results

« Conclusion

Benchmark Information

#primitive gates | Contained arithmetic macros Multiplier type Multiplier size

280-1261 (a+b)Xc,axc+bxc Wallace tree 6*6)—(8*7)
ut2 1197-1994 axb Booth (16*16)—(16*16)
ut3 2727-4226 axb Booth (32*32)—(48*48)
uts 1025-2261 a X b; MUX Wallace tree (12*12)-(12*12)
ut? 474-2301 (signed) a x b Booth; Wallace tree (9*9)—(24*24)
ut8 1061-2308 (signed) a x b Booth; Wallace tree (23723)—-(24724)
ut13 697-2385 axb Booth; Wallace tree (M *11)=(17*17)
ut14 1402-3402 axbhb Booth; Wallace tree (17 *17)—=(19*17)
ut15 851-3023 axbhb Booth; Wallace tree (12*12)—= (17 *17)

ut20 584-22600 (signed) a x b; Booth; Wallace tree (10*10)—(45*45)
a+b+cxd—eXf

ut26 564-10383 axXb;axb+c; Booth; Wallace tree (9*9)—-(28*28)
a+b+cxd+eXf

ut32 711-2480 (signed)a x b Booth; Wallace tree (10*10) = (17 *17)
ut36 2855-25489 MUX * *
ut41 1103-5463 axb Booth; Wallace tree (13*13)—(30*30)

Contest Results

120

45000 16 (latest resull g
110
40000

100
35000 90

test
,//'_ 80 (Contes -

30000 blldlllpl()ll Vb‘lbIUll)
70

25000
60

20000

15000

10000

5000

0

50
40
2nd 3rd 4th 6 7 8 9 10 11 12 13 14 15
Bl cost (in contest metric) -@- # solved

NI A 30
= 4 T
[

10

CNF encoding time limit: 25s
SAT solving time limit: 100s
cost =4 * CNF encoding time + SAT solving time

Comparison with Commercial Tools
| Case | Ourresults | Commercial tool X results | Commercial tool Y results |

#circuits #solved Avg runtime (s) #solved Avg runtime (s) #solved Avg runtime (s)

ut1 13 13 0.3 13 7.1 13 64.6
ut2 13 13 0.9 13 1.4 3827.4
ut3 13 13 3.5 8 854.1 5000
utd 13 13 0.4 13 41.9 5.1
ut7 13 13 1.0 13 36.8 60
ut8 13 13 1.2 9 301.2 854.2
ut13 13 13 0.4 12 704.4 1237.6
ut14 13 13 0.7 2361.4 4308.3
ut15 13 13 0.9 827.8 2967.2
ut20 13 11 41 1256.3 3867.1
ut26 s 13 1.2 1883.8 4175.5
ut32 13 13 0.7 1538.7 3506.3
ut36 13 & 11.7 104.9 3871.4
ut41 s 13 1.0 820.7

total 182 170 111 87
avg 2 767.2

.0
P 7 I O N N T 2 G

Some results |

#primitive commercial tool _r
our results description
gates results

benchmarks

ut1\test\test1
ut1\test\test2
ut1\test\test3
ut1\test\test4

Compare
ut1\test\test5 (A+B)XC

ut1\test\test6 and
(AX C)+(B X C)

ut1\test\test7

ut1\test\test8

ut1\test\test9
ut1\test\test10

total

Some results ||

#primitive commercial tool o
our results description
gates results

ut41\test\test1 1444 2564.69
ut41\test\test2 1434 >2056.73
ut41\test\test3 2258 >1239.85

benchmarks

ut41\test\test4 2734 >705.83 Compare

ut41\test\test5 2997 >147 .21 Wallace tree
AXB

ut41\test\testo 3254 >370.6 and
ut41\test\test7 3830 >204.49 Booth AXB
ut41\test\test8 4139 : >432.46
ut41\test\test9 5108 : >312.36
ut41\test\test10 5463 >351.88
total 32661 >8386

*>X means the tool aborted at this timing point and cannot give the

result N

Outline

+ A Coupling Area Reduction Technique
Applying ODC Shifting

- Boosting Formal Verification by Macro
Level Functional Checking

« Conclusion

Outline

- Difficulty of SAT in Comparing Arithmetic
Logic

- Formal Verification by Macro Level
Function Checking

- Experimental Results

« Conclusion

Conclusion

We experiment a new reverse engineering and logic
synthesis assisted verification methodology.

Complicated arithmetic logics and their formulae are
extracted to create internal equivalence for SAT solvers
to avoid being trapped in certain exponential runs.

This approach is orders of magnitude faster than any
other known approach.

It would be interesting to study if this Complementary
Greedy Coupling scheme can also be useful for other
NP-complete problems.

