
Coupling

Reverse Engineering and SAT

to Tackle NP-Complete

Arithmetic Circuitry Verification

in O(# of gates)

Easy-Logic Technology Ltd.

Outline

• Difficulty of SAT in Comparing Arithmetic

Logic

• Formal Verification by Macro Level

Function Checking

• Experimental Results

• Conclusion

2

Formal Verification

Golden circuit Revised circuit

??
Use SAT!

3

SAT Solver
Translate the circuit into a set of CNF clauses

Solve the CNF by SAT solver (MiniSat, Glucose, Lingeling, etc)

a
o

b

(a ˅ ┐o) ˄

(b ˅ ┐o) ˄

(┐a ˅ ┐b ˅ o)

a

b
o

(┐a ˅ o) ˄

(┐b ˅ o) ˄

(a ˅ b ˅ ┐o)

a

b
o

(┐a ˅ ┐b ˅ ┐o) ˄

(a ˅ ┐b ˅ o) ˄

(┐a ˅ b ˅ o) ˄

(a ˅ b ˅ ┐o)

a o
(┐a ˅ ┐o) ˄

(a ˅ o)

Performance of SAT is

poor when circuits contain

arithmetic macros,

especially multipliers.

4

• Equivalence checkers can perform extremely well if the

two designs to be compared contain a high degree of

structural similarity, which means that the two circuits

contain a lot of internal equivalences.

G

g2

g1

g3
g4

…

Verification & Internal equivalence

5

F

f2

f1

f3 f4
…

z1 z2

f4 = g4 => (z1,z2) are internal

equivalences

Verification & Internal equivalence

• check equivalence within functional blocks

separated by (internal) equivalent points

– Assign CNF variables one by one

– Propagate new assignment and see if there is

any conflict

6

O(2n) complexity

in worst case

Verification & Internal equivalence

• In other words, if no internal equivalences

exist, verification can become impossible

even for small cases.

7

A 4× 4 Wallace Tree Multiplier

8

FA

pp2,0pp1,1

pp1,0pp0,1

pp3,0pp2,1pp3,1pp2,2

pp0,3
pp1,3pp3,2

pp2,3pp3,3 pp0,2

pp1,2

O1O5O6 O2O3O4

O7

16 partial products

12 adders

4 half adders, 8 full adders
FA

FAFAFAFA

FA FA HA HA HA HA

A 4× 4 Booth Multiplier

9

pp2,4 pp2,3

pp0,1
pp0,0

pp2,2pp0,4 pp0,3 pp2,1 pp0,2 pp2,0

O0O1O2O3O4O5O6

O7
X1

X3

10 partial products, 2 constants

10 adders

5 half adders, 5 full adders

HAHAHAHAHAFAFA

FAFAFA

Partial Products Difference
ai ai-1

ai+1bj-1 bj

Booth multiplier partial product
10

ai bj

Wallace tree multiplier

partial product

BA

C

O

4-bit Adder

6X6

Multiplier

Multiplier and Adder

CA C

O

4X4

Multiplier

B

8-bit Adder

4X4

Multiplier

(A + B) X C A X C + B X C

11

Difficulties of Verify Multipliers

• BDD: requires O(2n) memory to represent an n-

bit multiplier [1]

• SAT: requires O(2n) branches or decisions [2]

12

[1] Bryant, Randal E. "Graph-based algorithms for Boolean function

manipulation.“ Computers, IEEE Transactions on 100.8 (1986): 677-691.

[2] Järvisalo, Matti. "Equivalence checking multiplier designs (2007) SAT

Competition 2007 benchmark description."

SAT Performance of Verifying

Two Different Multipliers*

Results for Satz 2.15 Results for Minisat 2.0 with preprocessing

13

Over 1020

centuries!

Solving time for a 64-bit multiplier?

* Järvisalo, Matti. "Equivalence checking multiplier designs (2007)

SAT Competition 2007 benchmark description."

Outline

• Difficulty of SAT in Comparing Arithmetic

Logic

• Formal Verification by Macro Level

Function Checking

• Experimental Results

• Conclusion

14

Circuit 1 Circuit 2

Wallace tree

multiplier

Booth

multiplier

Exponential

runtime or

memory

15

Wallace tree

multiplier

Where are

the macros?

16

•Sizes are very large

•Buried in a flatten design

Reverse Engineering

• Though it’s difficult to verify a multiplier

from pure logic view, we can recognize it

from some intrinsic features.

• We propose a reverse engineering

scheme which can map1-bit adder

arithmetic macros including adders,

multipliers (Wallace tree or Booth), and

multiplexers.

17

18

by SAT

Solver

by Reverse

Engineering
(“structural DNA tracing”

method)

+

f ≠ g

f = g

Likely solved in P

time

May take

exponential runtime

Could be

exponential

Can be solved in P

time for “practical”

industrial circuits

Efficiently solved

in P time in any

condition

f ≠ g
f = g f = g

f ≠ g

f = g

f ≠ g

f = g
(by RE)

f ≠ g
(by SAT)

Solve f = g ?

Our Flow
Input netlist f and g

CNF file

Generate CNF clauses

for h = fg

Invoke SAT solver for h

Satisfiability

Macro operand mapping

Macros operator mapping

Mapped netlist

Preprocessing stage

19

Formulae equivalence

checking (*BMD)

Arithmetic formulae

normalization

Optimized netlist

8-bit Multiplier Structure

aibj

(+)

o7 o6 o5 o4 o3 o2 o1 o0o15 o14 o13o12o11o10o9 o8

Steps of identify a multiplier macro:

1. Construct adder-trees

2. Construct adder-forest by connecting trees Use carries

3. Determine multiplier boundary

20

Determine Multiplier Boundary

(+)

o7 o6 o5 o4 o3 o2 o1 o0o15 o14 o13o12o11o10o9 o8

a0 b0a1
b1

A:

B:

a0a1

b0b1

……

……

a7

b7

Output

boundary

Input

boundary

21

BA

Multiplier

A× B or B× A?

C A + BA[0...5] B[0...7]

PI: PI0 PI1 PI2 PI3

PI1 PI2 PI0 PI3

0110 1001<

Operand with more

variables placed on

left

Longer operand

placed on left
Determine order by

checking contained

PIs in fanin cone

22

Operand Mapping

Booth Multiplier

• Also 1-bit adder based macro

• Different at partial products, adder tree

and adder forest structure

• Mapping process similar to Wallace tree

multiplier

23

Complexity of Mapping Multiplier

• Construct adder trees and forest: linear to

circuit size

• Determine multiplier boundary: O(n2) to n-

bit multiplier

24

• Choose some most common formula patterns.

• e.g. 𝑎 + 𝑏, 𝑎 × 𝑏, 𝑎 + 𝑏 × 𝑐, 𝑎 × 𝑏 + c × 𝑑 + 𝑒 × 𝑑,

𝑎 + 𝑏 + 𝑐 × 𝑑 − 𝑒 × 𝑓, 𝑎 × 𝑏 + 𝑐…

• Create a standard structure form for every

chosen formula pattern

• e.g. use Wallace tree structure as the canonical form

of 𝑎 × 𝑏

• Replace every macro by its pre-defined form

Formula Checking &

Normalization

25

Outline

• Difficulty of SAT in Comparing Arithmetic

Logic

• Formal Verification by Macro Level

Function Checking

• Experimental Results

• Conclusion

26

Benchmark Information

Case #primitive gates Contained arithmetic macros Multiplier type Multiplier size

ut1 280-1261 𝑎 + 𝑏 × 𝑐; 𝑎 × c + b × c Wallace tree (6 * 6) – (8 * 7)

ut2 1197-1994 𝑎 × 𝑏 Booth (16 * 16) – (16 * 16)

ut3 2727-4226 𝑎 × 𝑏 Booth (32 * 32) – (48 * 48)

ut5 1025-2261 𝑎 × 𝑏; MUX Wallace tree (12 * 12) – (12 * 12)

ut7 474-2301 (signed) 𝑎 × 𝑏 Booth; Wallace tree (9 * 9) – (24 * 24)

ut8 1061-2308 (signed) 𝑎 × 𝑏 Booth; Wallace tree (23 * 23) – (24 * 24)

ut13 697-2385 𝑎 × 𝑏 Booth; Wallace tree (11 * 11) – (17 * 17)

ut14 1402-3402 𝑎 × 𝑏 Booth; Wallace tree (17 * 17) – (19 * 17)

ut15 851-3023 𝑎 × 𝑏 Booth; Wallace tree (12 * 12) – (17 * 17)

ut20 584-22600 (signed) 𝑎 × 𝑏;

𝑎 + 𝑏 + 𝑐 × 𝑑 − 𝑒 × 𝑓
Booth; Wallace tree (10 * 10) – (45 * 45)

ut26 564-10383 𝑎 × 𝑏; 𝑎 × 𝑏 + c;
𝑎 + 𝑏 + 𝑐 × 𝑑 + 𝑒 × 𝑓

Booth; Wallace tree (9 * 9) – (28 * 28)

ut32 711-2480 (signed) 𝑎 × 𝑏 Booth; Wallace tree (10 * 10) – (17 * 17)

ut36 2855-25489 MUX * *

ut41 1103-5463 𝑎 × 𝑏 Booth; Wallace tree (13 * 13) – (30 * 30)

27

0

5000

10000

15000

20000

25000

30000

35000

0

10

20

30

40

50

60

70

90

80

cost (in contest metric) # solved

100

110

120

40000

45000

2nd 3rd 4th 5 6 7 8 9 10 11 12 13 14 15

171719191919

33333333
383838383838

4141

51515151
57575757

1010

28

116 (latest result)

Easy-

LEC

80 (Contest

Champion version)

80 (Contest

Champion version)
??

Contest Results

CNF encoding time limit: 25s

SAT solving time limit: 100s

cost = 4 * CNF encoding time + SAT solving time

29

Case Our results Commercial tool X results Commercial tool Y results

#circuits #solved Avg runtime (s) #solved Avg runtime (s) #solved Avg runtime (s)

ut1 13 13 0.3 13 7.1 13 64.6

ut2 13 13 0.9 13 1.4 4 3827.4

ut3 13 13 3.5 8 854.1 0 5000

ut5 13 13 0.4 13 41.9 13 5.1

ut7 13 13 1.0 13 36.8 13 60

ut8 13 13 1.2 9 301.2 13 854.2

ut13 13 13 0.4 12 704.4 10 1237.6

ut14 13 13 0.7 5 2361.4 2 4308.3

ut15 13 13 0.9 6 827.8 6 2967.2

ut20 13 11 4.1 3 1256.3 3 3867.1

ut26 13 13 1.2 5 1883.8 2 4175.5

ut32 13 13 0.7 6 1538.7 4 3506.3

ut36 13 3 11.7 3 104.9 3 3871.4

ut41 13 13 1.0 2 820.7 1 4530.3

total 182 170 111 87

avg 2.0 767.2 2733.9

ratio 1 93% 1 61% 381.3x 48% 1358.8x

Comparison with Commercial Tools

Some results I

benchmarks
#primitive

gates
our results

commercial tool

results
description

ut1\test\test1 280 0.24 0.13

Compare

(A+B)× C

and

(A× C)+(B× C)

ut1\test\test2 415 0.39 0.18

ut1\test\test3 731 0.26 4.95

ut1\test\test4 878 0.33 6.24

ut1\test\test5 1005 0.36 11.06

ut1\test\test6 1108 0.39 10.22

ut1\test\test7 1187 0.42 9.68

ut1\test\test8 1256 0.45 14.97

ut1\test\test9 1261 0.45 9.65

ut1\test\test10 972 0.45 6.24

total 9093 3.74 73

30

Some results II
benchmarks

#primitive

gates
our results

commercial tool

results
description

ut41\test\test1 1444 0.52 2564.69

Compare

Wallace tree

A× B

and

Booth A× B

ut41\test\test2 1434 1.81 >2056.73

ut41\test\test3 2258 0.55 >1239.85

ut41\test\test4 2734 0.76 >705.83

ut41\test\test5 2997 0.94 >147.21

ut41\test\test6 3254 1.02 >370.6

ut41\test\test7 3830 1.13 >204.49

ut41\test\test8 4139 1.3 >432.46

ut41\test\test9 5108 1.4 >312.36

ut41\test\test10 5463 1.71 >351.88

total 32661 11.14 >8386

*>X means the tool aborted at this timing point and cannot give the

result 31

Outline

• A Coupling Area Reduction Technique

Applying ODC Shifting

• Boosting Formal Verification by Macro

Level Functional Checking

• Conclusion

32

Outline

• Difficulty of SAT in Comparing Arithmetic

Logic

• Formal Verification by Macro Level

Function Checking

• Experimental Results

• Conclusion

33

Conclusion

• We experiment a new reverse engineering and logic

synthesis assisted verification methodology.

• Complicated arithmetic logics and their formulae are

extracted to create internal equivalence for SAT solvers

to avoid being trapped in certain exponential runs.

• This approach is orders of magnitude faster than any

other known approach.

• It would be interesting to study if this Complementary

Greedy Coupling scheme can also be useful for other

NP-complete problems.

34

Thank You

