

Stitch Aware Detailed Placement for Multiple E-Beam Lithography

Yibo Lin¹, Bei Yu², Yi Zou^{1,3}, Zhuo Li⁴, Charles J. Alpert⁴, and **David Z. Pan¹**

¹ECE Department, University of Texas at Austin ²CSE Department, Chinese University of Hong Kong ³CEAS Department, Nanjing University ⁴Cadenace Design Systems, Inc.

This work is supported in part by NSF and SRC

Outline

- Introduction
- Previous Work
- Problem Formulation
- Stitch Aware Detailed Placement
- Experimental Results
- Conclusion

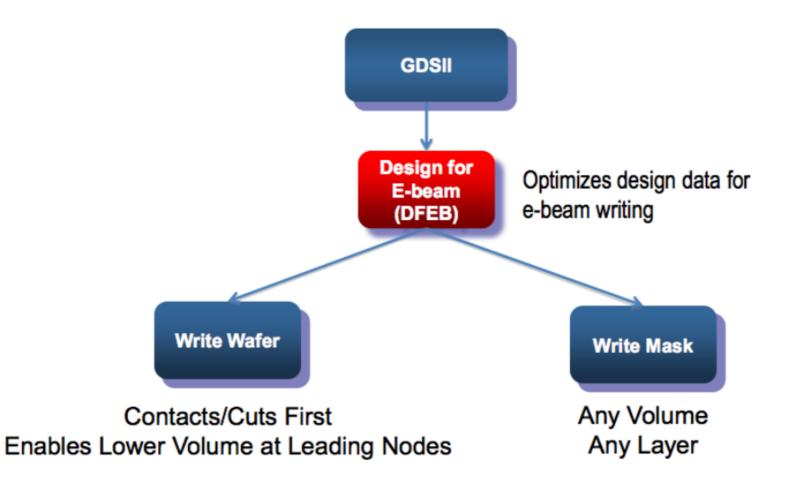
Introduction

[Courtesy ITRS]

Technology Scaling

		Uni directional norallal line/anece nottorning techniques																		
			Uni-directional parallel line/space patterning techniques																	
		00	40	00	36	34	32	30	28	26	24	22	20	18	16	14	12	10	8	6
-	Exposure tool				72	68	64	60	56	52	48	44	40	36	32	28	24	20	16	12
	Immersion																			
	Immersion						19				20									
	Immersion	1										2								
	Immersion	1													5		1			
	EUV	1														18				
	EUV	1													4					
	Immersion	1															3	12		
	ArF, EUV, E-beam	1			eature	atures do not phase separate well by DSA														
	Nanoimprint	1															13			XA
	High NA EUV																			
	E-beam										8				15			76		
	E-beam			atures do no phase separate well by DSA												9	10			
		<u> </u>																///////////////////////////////////////		<u> </u>

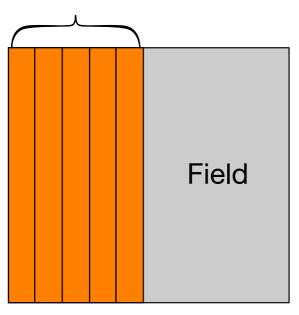
Consenses that technique has been used in production

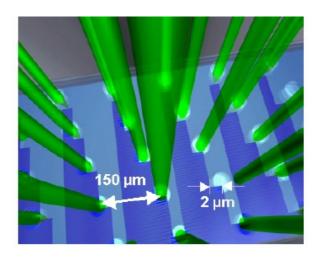

Published demonstrations from potential deployable equipment show opportunity for production

Simulations, surface images, or research grade demonstration suggest potential for extendability

3

E-Beam Lithography

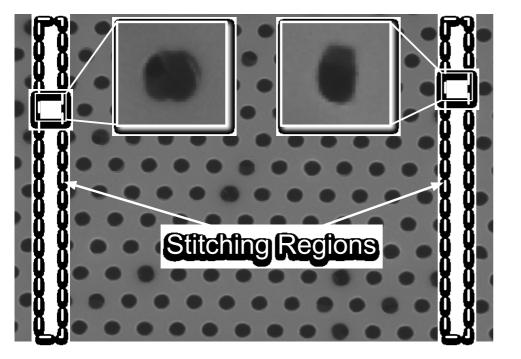

• Direct-write or mask?

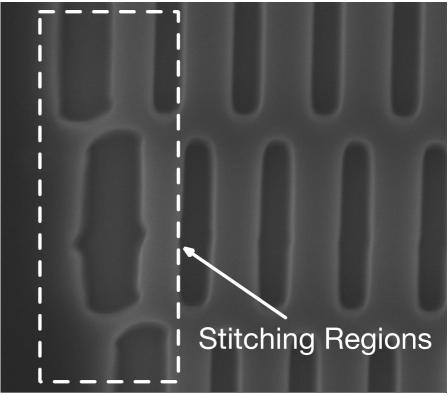


[Courtesy E-beam Initiative]

Multiple E-Beam Lithography

- Massively-Parallel e-beam writing
 - Each stripe has width of 50~200 microns
 - Stitching region has a width around 15nm [Berg+, SPIE'11]
 - Field stitching


[Fang+,DAC'13]

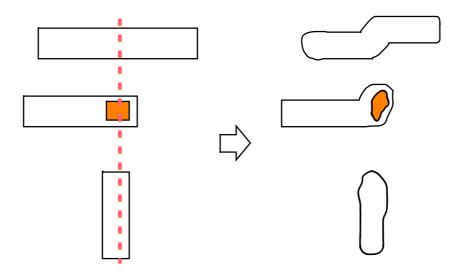

MAPPER Lithography System

Stripes

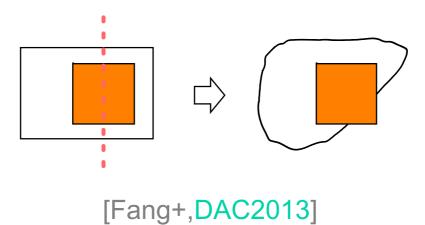
Field Stitching

 SEM figures showing stitches at boundaries of beam stripes

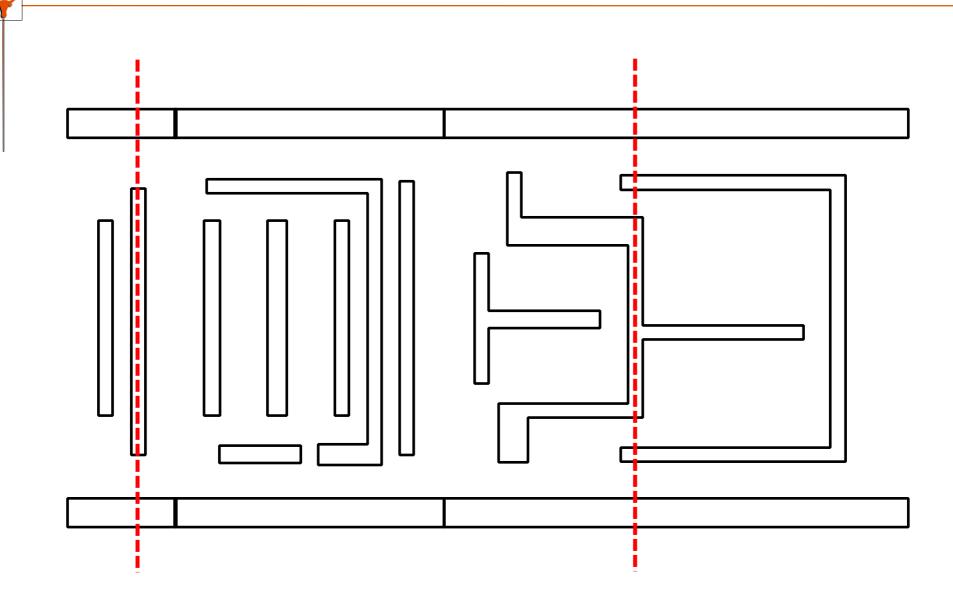
Holes


Lines

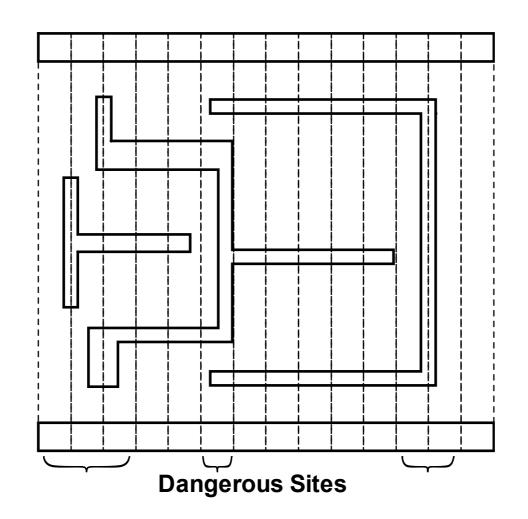
Previous Work


- Stitch aware routing for MEBL
 - [Fang+,DAC'13], [Liu+,TCAD'15]
- TPL aware placement
 - [Yu+,TCAD'15], [Kuang+,TVLSI'15], [Chien+,TCAD'15]
 - [Tian+,ICCAD'14], [Lin+,ISPD'15]
 - TPL applies different constraint to placement from MEBL
- No placement algorithm addressing MEBL stitch constraint yet

Stitch Errors


Defects on vias and vertical wires

• Defects on short polygons


Stitch Errors within Standard Cell

Resolve stitch errors by proper placement

Dangerous Site Representation

- A cell is divided into sites (poly pitch)
- Sites that contain susceptible segments are marked as "dangerous sites"

Problem Formulation

Input

- Initial placement
- Dangerous site information for each standard cell (precomputed)
- Output
 - New placement with optimized wirelength and minimum stitch errors
 - MEBL friendliness

Single Row Placement & Previous Work

- Given a set of ordered cells c₁, c₂, ..., c_n, place cells horizontally to minimize objectives such as wirelength or movement
- Previous work on single row algorithm
 - Conventional objectives
 - [Brenner+,DATE'00], [Kahng+,GLSVLSI'04], Abacus [Spindler+,ISPD'08], [Taghavi+,ICCAD'10]
 - TPL awareness
 - [Yu+,ICCAD'13]: O(mnK)
 - [Kuang+,ICCAD'14]

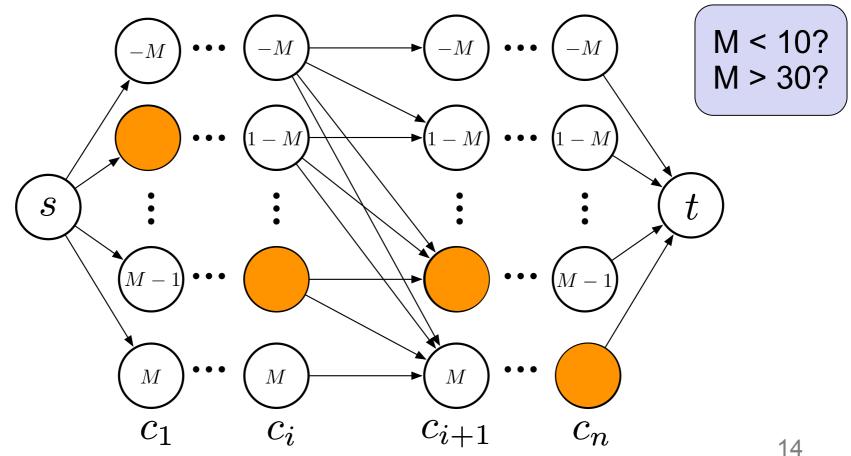
Note: $\tau = 10, \phi = 1, v = 1$ in the experiment

Single Row Placement

- Given a set of ordered cells c₁, c₂, ..., c_n, with maximum cell displacement M
 - Minimize wirelength and stitch errors
 - An algorithm supports a cost function generalizes wirelength, movement and stitch errors

$$Cost_{i}(p_{i}) = \tau \cdot WL(p_{i}) + \phi \cdot MOV(p_{i}) + \nu \cdot SP(p_{i})$$

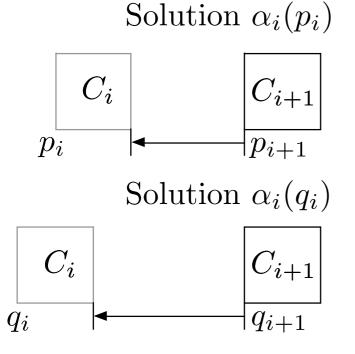
$$Wirelength \ cost$$

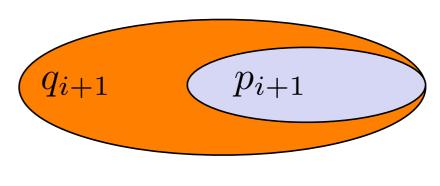

$$Stitch \ error \ penalty$$

$$SP(p_{i}) = \begin{cases} 0, & no \ stitch \ error \\ large \ number, & stitch \ error \end{cases}$$

Note: $\tau = 10, \phi = 1, v = 1$ in the experiment

Single Row Placement

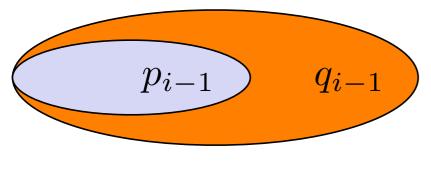

- Given a set of ordered cells c₁, c₂, ..., c_n, with maximum cell displacement M
 - Shortest path solved by dynamic programming
 - O(nM²)



Speedup with Pruning Techniques

Pruning technique 1

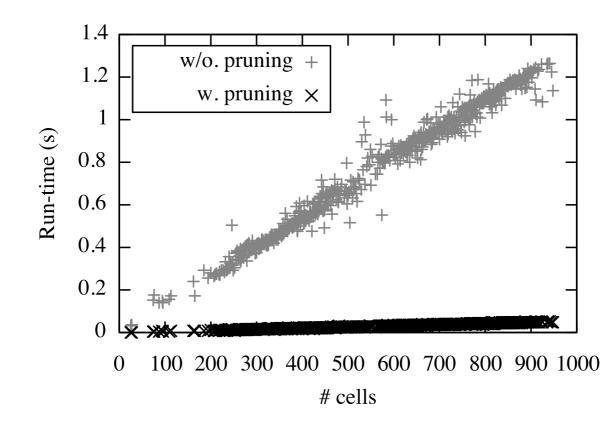
- Let $t_i(p_i)$ denote the cost of placement solution from c_1 to c_i in which c_i is placed at p_i
- Comparing two solutions $\alpha_i(p_i)$ and $\alpha_i(q_i)$, if $t_i(p_i) \ge t_i(q_i)$ and $p_i \ge q_i$, then $\alpha_i(p_i)$ is inferior to $\alpha_i(q_i)$.
- Prune inferior solutions


Value sets of p_{i+1} and q_{i+1}

Speedup with Pruning Techniques

Pruning technique 2

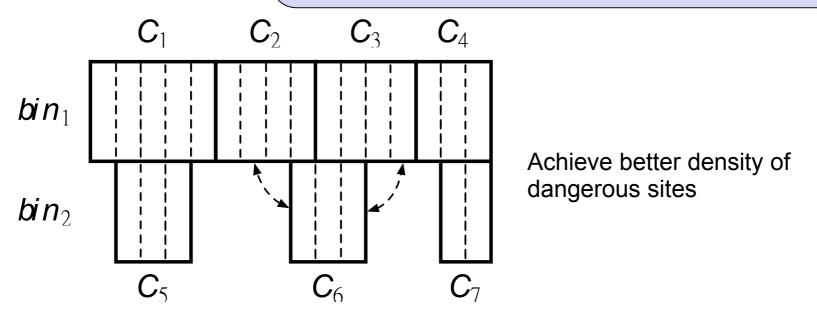
- Let p^{*}_{i-1} be the optimal position of cell c_{i-1} when cell c_i is placed at p_i
- Let q_{i-1}^* be the optimal position of cell c_{i-1} when cell c_i is placed at q_i
- If $q_i \ge p_i$, then $q_{i-1}^* \ge p_{i-1}^*$
- Reduce searching ranges



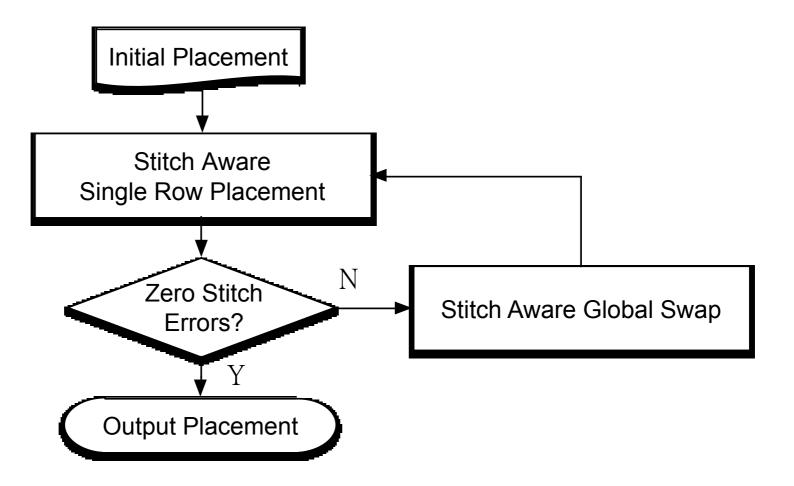
Value sets of p_{i-1} and q_{i-1}

Effectiveness of Speedup Techniques

O(nM) complexity


- Requirements: $cost_i(p_i)$ only depends on p_i
- 30x speedup
- Keep optimality

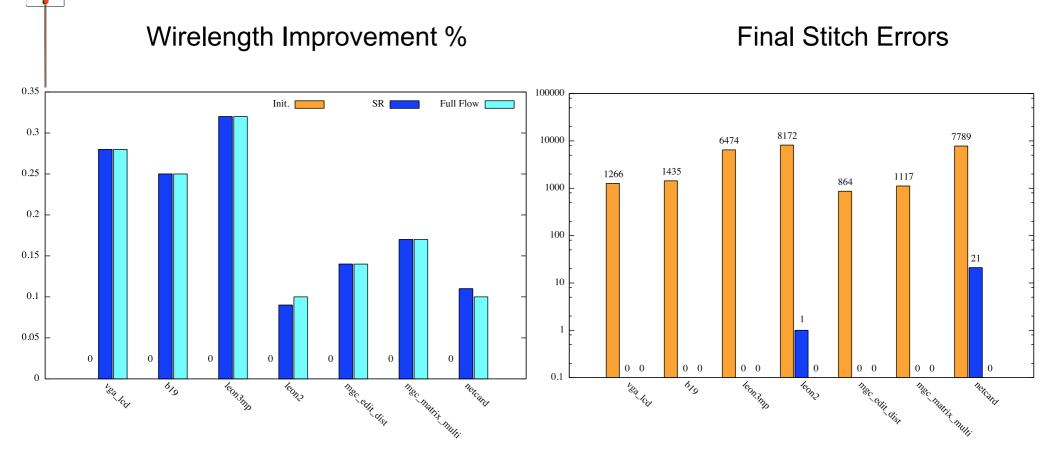
Resolve Stitch Errors in Dense Regions


- Global swap to smooth out density
 - $score(c_i, c_j) = \Delta sHPWL \lambda \cdot P_{ds} \mu \cdot P_{ov}$ Overlap penalty

sHPWL change Normalized penalty of dangerous site density $P_{ds} = \max(0, |D'_{ds}(i) - D'_{ds}(j)| - |D_{ds}(i) - D_{ds}(j)|) \cdot A_b$ $D_{ds}(i)$: the density of dangerous sites in bin B_i before swap $D'_{ds}(i)$: the density of dangerous sites in bin B_i after swap A_b : bin area

Note: $sHPWL = HPWL \times (1 + \alpha \times P_{ABU})$ from ICCAD 2013 Contest

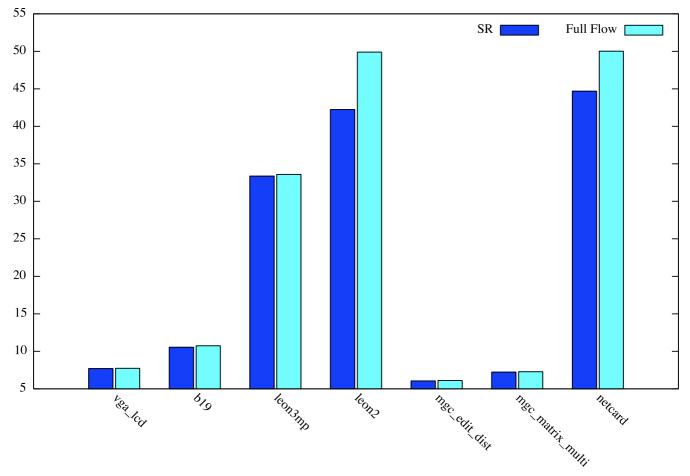
Overall Flow



Experimental Environment Setup

- Implemented in C++
- 8-Core 3.4GHz Linux server with 32GB RAM
- ICCAD 2014 contest benchmark
 - Mapped to Nangate 15nm Standard Cell Library
 - Legalized with RippleDP [Chow+, ISPD'14]

Design	#cells	#nets	#blockages
vga_lcd	165K	165K	0
b19	219K	219K	0
leon3mp	649K	649K	0
leon2	794K	795K	0
mgc_edit_dist	131K	133K	13
mgc_matrix_mult	155K	159K	16
netcard	959K	961K	12


Experimental Results

Init.: initial input placement SR: single row algorithm only Full Flow: apply full flow including single row algorithm and global swap

Runtime Comparison

- Full flow is slightly slower than SR
 - Only apply to regions still containing stitch errors

Runtime (s)

Conclusion

- Methodology to handle e-beam stitch errors during detailed placement stage
- A linear time single row algorithm with highlyadaptable objective functions
- Better EBL friendliness
- Future work
 - Consider interaction between placement and routing for EBL friendliness

Thanks