Clock Buffer Polarity Assignment Utilizing Useful Clock Skews for Power Noise Reduction

Deokjin Joo and Taewhan Kim

SNU CAD Laboratory, Seoul National University, Korea

Outline

- Introduction
- Motivational Example
- Proposed Method
- Experimental Results
- Extension: Coping with Process Variations

Introduction

Introduction

- Motivational Example
- Proposed Method
- Experimental Results
- Extension: Coping with Process Variations

Introduction: Clock Polarity Assignment

Y.-T. Nieh, S.-H. Huang, and S.-Y. Hsu
 "Minimizing peak current via opposite-phase clock tree"

Subtree-1

Introduction: Clock Polarity Assignment

R. Samanta, G. Venkataraman, and J. Hu,
 "Clock buffer polarity assignment for power noise reduction"

Introduction: Leaves are Dominant

- P.-Y. Chen, K.-H. Ho, and T. Hwang
 "Skew Aware Polarity Assignment in Clock Tree"
- # buffers ∝ Noise

BUFs \neq **#** INVs for Better Results

- H. Jang, T. Kim,
 "Simultaneous Clock
 Buffer Sizing and
 Polarity Assignment for
 Power/Ground Noise
 Minimization"
- Took peak noise into consideration

Introduction: Clock Polarity Assignment

Motivational Example

Introduction

Motivational Example

- Proposed Method
- Experimental Results
- Extension: Coping with Process Variations

Limitations of Previous Works

- Either focused on #BUFs and #INVs, or
- Bounded clock skew based
- Leads to suboptimal results (higher peak current noise)

Useful Clock Skew

Setup and Hold times considered individually -3 -4

High performance

Optimal mapping .

(a) Input tree with 4 leaf nodes

-3	\leq	$t_0 - t_1$	\leq	2
-5	\leq	$t_1 - t_2$	\leq	4
-3	\leq	$t_0 - t_3$	\leq	3
-4	\leq	$t_3 - t_2$	\leq	2
-3	\leq	$t_2 - t_0$	\leq	2

Type	Δt	Noise			
Type	$\Delta \iota$	P+	P-		
B1	0	10	3		
B2	+2	12	3		
I1	0	3	9		
I2	+1	3	11		

(b) Timing constraints

(c) Library

#	T	ype Se	electio	Skow	Noise		
	n_0	n_1	n_2	n_3	DREW	P+	P-
<u>1</u>	<u>B1</u>	$\underline{B2}$	$\underline{B2}$	$\underline{B2}$	2	$\underline{46}$	<u>12</u>
2	B1	B2	B2	I2	3	37	20
3	B1	B2	I2	B2	3	37	20
4	B1	$\mathbf{B2}$	$\mathbf{I2}$	$\mathbf{I2}$	3	28	28
<u>5</u>	<u>I1</u>	$\underline{B2}$	$\underline{B2}$	$\underline{B2}$	<u>2</u>	$\underline{39}$	<u>18</u>
6	I1	B2	B2	I2	3	30	26
7	I1	B2	I2	B2	3	30	26
8	I1	B2	I2	I2	3	21	34

(d) 8 feasible mappings,

found in 4⁴ search space

Useful Clock Skew

Setup and Hold times considered individually -2 -3 ≤ to -t1 2 2 T

Bounded skew based algorithms use the tightest constraint, ± 2

(a) Input tree with 4 leaf nodes

Type	Δt	Noise			
Type	$\Delta \iota$	P+	P-		
B1	0	10	3		
B2	+2	12	3		
I1	0	3	9		
I2	+1	3	11		

(b) Timing constraints

(c) Library

(d) 8 feasible mappings, found in 4⁴ search space

Proposed Method

- Introduction
- Motivational Example
- Proposed Method
- Experimental Results
- Extension: Coping with Process Variations

Problem Definition: UsefulMin

Given:

Find:

Subject to

Minimize noise

B: Buffer library

I: Inverter library

- Under a set of *useful clock skew* constraints (individual pair-wise clock skew constraints)
- **NP-Complete** (decision version)

14

Clique Based Approach

Clique Based Approach

Integer Linear Programming Approach

ILP approach possible

- □ 1, when choice in clique, 0 when not
- Unsuitable for larger problems

LP relaxation infeasible (problem property)

- There are too many cliques in the graph
- Complete search impossible
- Local search: find a clique, and explore
 K-neighbor cliques.
 - Clique Y is an K-neighbor of X,
 - If Y is obtainable from X by replacing at most K vertices of X.
- Still, too many nodes in the graph.
 Not easy to increase K

□ 100 leaves and K=5 $\rightarrow \binom{100}{K} = 75.29 \times 10^6$

Zone-by-zone K-neighbor Search

Experimental Results

Introduction

- Motivational Example
- Proposed Method
- Experimental Results
- Coping with Process Variations

Experimental Results

10.9% Noise reduction, compared to previous (bounded skew) algorithm

Nangate 45nm Tech.

21

ISPD 2010 Benchmark Info			Base		WaveMin*		UsefulMin		Improvement	
Benchmk Circuits	# Cnstraints	# Lvs	Noise (mA)	Area (um²)	Noise (mA)	Area (um ²)	Noise (mA)	Area (um ²)	Noise (%)	Area (%)
01	11070	221	235.1	22.38	155.3	21.24	122.1	13.73	21.38	35.38
02	22490	454	433.9	45.97	281.9	43.83	242.4	29.62	14.01	32.42
03	12000	113	106.1	11.44	45.58	6.00	42.56	6.49	6.63	-8.26
04	18450	116	115.3	11.75	52.85	8.58	48.21	6.60	8.78	23.07
05	10160	49	51.83	4.96	35.12	4.84	27.78	3.09	20.90	36.05
06	9810	77	74.26	7.80	43	6.28	40.25	4.88	6.40	22.22
07	19150	131	125.4	13.26	73.26	13.20	67.13	8.51	8.37	35.55
08	11340	89	90.88	9.01	51.43	7.05	51.05	5.88	0.74	16.59
Average							10.90	24.13		

* "A Fine-Grained Clock Buffer Polarity Assignment for High-Speed and Low-Power Digital Systems, D. Joo and T. Kim, IEEE TCAD, Mar. 2014

Experimental Results: Normalized Peak Current

ISCAS'89 Benchmarks

Experimental Results: Normalized Exec. Time

Coping with Process Variations

- Introduction
- Motivational Example
- Proposed Method
- Experimental Results
- Extension: Coping with Process Variations

- Technology scaling (<45nm), higher process variations</p>
- Propagation delays are random variables
- **1.** Worst-case timing analysis

Excess margin, lower performance

2. Statistical Static Timing Analysis (SSTA)

Background

J. Lu and B. Taskin, "Clock buffer polarity assignment with skew tuning," TODAES 2011.

Incrementally reduce clock skew to increase yield

Noise increases

M. Kang and T. Kim, "Clock buffer polarity assignment considering the effect of delay variations," ISQED 2010

- □ For *each pair* of leaves, yield is satisfied
- No direct control over design yield

Construct graph, considering γ Statistical Static Timing Analysis (SSTA) Given yield constraint γ,

Create edge, if pairwise yield satisfies γ .

(Satisfies imposed useful skew constraint with probability γ)

Proposed Method

Compute design yield, during K-neighbor exploration,

Given yield constraint *γ*,

- Suppose the current best clique has noise n_{best} , design yield γ_{best}
- For candidate clique, compute noise n_c and *design* yield γ_c
- Select candidate clique if...
 - $\gamma_c > \gamma_{best}$, when $\gamma_{best} < \gamma$ • Select higher yield choice if neither satisfy γ
 - n_c < n_{best}, when γ_{best} > γ and γ_c > γ
 Select lower noise choice if both satisfy γ

Experimental Results Under Process Variations

Gained yield improvement,without sacrificing noise

Benchmark Info		Average	Peak Curre	ent (mA)	Yield (%)				
Circuit	γ	Skew Tuning	Pairwise	UsefulMin- VA	Base	Skew Tuning	Pairwise	UsefulMin- VA	
01	0.83	120.10	123.68	92.93	84.70	76.4	73.1	81.1	
02	0.39	222.75	230.50	195.54	40.70	28.6	27.2	39.4	
03	0.98	50.40	51.10	51.47	99.60	94.9	93.8	98.6	
04	0.98	54.79	55.43	58.77	99.70	94	94.4	98.9	
05	0.98	27.93	27.78	27.92	99.99	98.8	98.6	99.7	
06	0.98	39.54	39.65	40.12	100.00	99.4	99.7	100	
07	0.98	59.76	62.09	66.45	99.90	96.3	96.5	99.1	
08	0.98	47.59	47.45	45.40	100.00	99.7	99.8	99.8	

Conclusions

- Proposed a scalable solution to the Polarity Assignment problem under Useful Clock Skew constraints
- Average 10.9% noise reduction over the best known method
- Extension: PA under delay variations

Questions?