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Power consumption has become one of the 

most significant problems in modern IC 

designs

Several low power design methodologies 

have been proposed

 Dynamic Voltage and/or Frequency Scaling 

(DVFS)

 Reconfiguration-oriented Approximate 

Computing
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Most previous works only address on either 

DVFS or logic reconfiguration at one time

For further investigation, we explore the 

idea about novel Dynamic Logic 

Reconfigurable Structure (DLRS) designs

 Power saving

 Data integrity

 Only marginal area overhead
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We propose novel low-cost DLRS adder 

and multiplier, and a comprehensive 

framework for low power designs.

 Higher speed (larger power) vs. lower speed 

(smaller power)

 Sharing basic components of both structures

 Reconfiguration can be done instantly
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We further integrate our DLRS designs with 

DVFS to create more flexibility

 For DVFS, module can only be scaled down to 

the lowest available VDD candidates

 With DLRS, we can perform DVFS on different 

structures of the same design thus creating 

more timing and power flexibility

 Better trade-off between performance and power 

consumption
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A novel DLRS methodology 

 Configure a design to high performance or low 

power 

 Keep data integrity

Low cost DLRS adder and multiplier 

 Can be configured to two different structures

A low power design framework 

 Integrates both DVFS and DLRS techniques to 

provide more flexibility 

 Low power optimization
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The DLRS adder is constructed by 

integrating the carry look-ahead adder and 

the ripple carry adder

 The former can provide higher speed yet 

consume larger power

 The later runs in slower speed yet consume 

smaller power
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Carry input needs to propagate through the 

serial chains of full adders

 Slow 

 Low power consumption
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Use two additional binary signals and a 

computation block to process carry

 Faster

 High power consumption
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Both adder have similar structures and 

basic components

 Integrate two structures by sharing 

components
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We use the similar idea of creating the 

DLRS adder to create the DLRS multiplier

 Array multiplier is constructed using the carry 

select adder and the ripple carry adder

 Wallace-tree multiplier reduces the multiplication 

layer and propagation delay by applying the 

booth-encoding scheme 
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18 adders and 4 inverters
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8 full adders and 4 half adders

Consumes less power

Low Speed
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15 full adders and 3 half adders

Consumes more power

High Speed
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Solid contour shows those modules may 

need reconfiguration

Dotted contour shows modules can be 

powered-off for unsigned calculation
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 In general, all logics can be designed with 

reconfiguration if 

 They can have logic sharing between the high 

speed mode and power saving mode for area 

consideration

We will explore more DLRS logic 

components in the future
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Given 

 (1) a circuit with DLRS adders and multipliers, 

 (2) all possible reconfiguring options of DLRS 
adders and multipliers,

 (3) a DVFS scheme and corresponding voltage 
candidates

Object

 Determine optimal configurations under timing 
constraints in the circuit 

Subject to

 the operating power is minimized
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Objective 

 minimize total power consumption 

 satisfying circuit timing constraint

min:  𝑖=1
𝑀 𝑃𝑖

𝑇
𝑙𝑖
< 𝑇𝑐,𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 ∀ 𝑙𝑖𝜖𝐿

𝑇
𝑙𝑖
=  𝑖=1

𝑞
𝑇𝑖 + 𝑇𝑜𝑡ℎ𝑒𝑟_𝑓𝑖𝑥𝑒𝑑_𝑔𝑎𝑡𝑒𝑠

 𝑗=1
2𝑁 𝑆𝑖,𝑗 = 1, ∀𝑖 ∈ 𝑀

𝑃𝑖 =  𝑗=1
2𝑁 𝑆𝑖,𝑗 × 𝑃𝑖,𝑗 , ∀𝑖 ∈ 𝑀

𝑇𝑖 =  𝑗=1
2𝑁 𝑆𝑖,𝑗 × 𝑇𝑖,𝑗, ∀𝑖 ∈ 𝑀
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On 8-core, 2.40GHZ, Intel Xeon E5620 CPU, 
with 32GB memory, CentOS release 5.9 
machine

Operating voltage candidates are set to 0.8V, 
0.9V, and 1V

 Three different timing constraints (i.e. tight, 
medium and loose) for each circuit

 Three benchmark circuits with 90nm 
technology are used
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Circuit 
Designs

# Components in Circuits

Adder Multiplier Subtractor Comparator Divider

HAL 2 6 2 1 0
IDCT 16 20 10 0 2
DIST 96 0 0 16 0



Circuit 
Designs

Operating 
Timing 

Constraint

DVFS DLRS/DVFS Joint

Power 
Consumption

(mW)

#  
Reconfigured 
DLRS adder 

(%)

#  
Reconfigured 

DLRS 
multiplier

(%)

Power 
Consumpti

on

(mW)

Power 
Reductio

n

(%)

Area 
Overhe

ad

HAL

Tight 10.9864 0  (0%) 6  (100%) 4.4244 59.73

6.13Medium 9.8878 0  (0%) 6  (100%) 4.3369 56.14

Loose 8.7891 2  (100%) 6  (100%) 4.1044 53.30

IDCT

Tight 40.7069 12  (75%) 20  (100%) 16.2625 60.05

6.55Medium 36.6362 13  (81.25%) 20  (100%) 16.0812 56.11

Loose 32.5655 16  (100%) 20  (100%) 15.7692 51.58

DIST

Tight 42.0221 93  (96.8%)

--

23.9472 43.01

4.74Medium 37.8199 96  (100%) 23.6352 37.51

Loose 33.6177 96  (100%) 23.6352 29.69
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We propose the concept of DLRS designs 

 allows logic reconfiguration

 creates more flexibility to trade-off between 
performance and power consumption

We propose a comprehensive framework 
for low power designs 

 smoothly integrate our DLRS designs with DVFS 
schemes

Our methodology can obtain up to 60.05% 
power reduction with only 6.55% area 
overhead
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