

A Novel Low-Cost Dynamic Logic Reconfigurable Structure Strategy for Low Power Optimization

*Yu-Guang Chen, Wan-Yu Wen, Yun-Ting Wang, You-Luen Lee, and Shih-Chieh Chang

Department of CS, National Tsing Hua University, HsinChu, Taiwan

Proposed DLRS Designs

Low-Power Optimization Framework

Experimental Results

Proposed DLRS Designs

Low-Power Optimization Framework

Experimental Results

- Power consumption has become one of the most significant problems in modern IC designs
- Several low power design methodologies have been proposed
 - Dynamic Voltage and/or Frequency Scaling (*DVFS*)
 - Reconfiguration-oriented Approximate Computing

- Most previous works only address on either DVFS or logic reconfiguration at one time
- For further investigation, we explore the idea about novel Dynamic Logic Reconfigurable Structure (DLRS) designs
 - Power saving
 - Data integrity
 - Only marginal area overhead

We propose novel low-cost DLRS adder and multiplier, and a comprehensive framework for low power designs.

- Higher speed (larger power) vs. lower speed (smaller power)
- Sharing basic components of both structures
- Reconfiguration can be done instantly

We further integrate our DLRS designs with DVFS to create more flexibility

- For DVFS, module can only be scaled down to the lowest available VDD candidates
- With DLRS, we can perform DVFS on different structures of the same design thus creating more timing and power flexibility
- Better trade-off between performance and power consumption

Major Contributions

A novel DLRS methodology

- Configure a design to high performance or low power
- Keep data integrity
- Low cost DLRS adder and multiplier
 - Can be configured to two different structures
- A low power design framework
 - Integrates both DVFS and DLRS techniques to provide more flexibility
 - Low power optimization

Proposed DLRS Designs

Low-Power Optimization Framework

Experimental Results

- The DLRS adder is constructed by integrating the carry look-ahead adder and the ripple carry adder
 - The former can provide higher speed yet consume larger power
 - The later runs in slower speed yet consume smaller power

Carry input needs to propagate through the serial chains of full adders

Slow

Low power consumption

4-bit Carry Look-ahead Adder

- Use two additional binary signals and a computation block to process carry
 - Faster
 - High power consumption

4-bit DLRS Adder

Both adder have similar structures and basic components

Integrate two structures by sharing components

DLRS Multiplier

We use the similar idea of creating the DLRS adder to create the DLRS multiplier

- Array multiplier is constructed using the carry select adder and the ripple carry adder
- Wallace-tree multiplier reduces the multiplication layer and propagation delay by applying the booth-encoding scheme

18 adders and 4 inverters

4-bit Array Multiplier (Unsigned)

- 8 full adders and 4 half adders
- Consumes less power
- Low Speed

4-bit Wallace-tree Multiplier

15 full adders and 3 half adders
Consumes more power
High Speed

LRS Multiplier Solid contour shows those modules may need reconfiguration Dotted contour shows modules can be powered-off for unsigned calculation $a_3b_4a_2b_5a_1b_6 \ a_3b_3a_2b_4a_1b_5 \ a_3b_2a_2b_3a_1b_4 \ a_3b_1a_2b_2a_1b_3 \ a_3b_0a_2b_1a_1b_2$ $a_2b_0 a_1b_1$ $a_1b_0 a_0b_1 a_0b_0$ FA HΑ ΗA FA FA FΑ FΑ $a_0 b_6$ $a_{0}b_{2}$ $a_0 b_7$ a_0b_3 $a_0 b_5$ FA FA FA FA FA FA FA FA FA FΑ Z_6 Z_0 18 Z_{5} Z_{A} Z_3 Z_2 Z_1

In general, all logics can be designed with reconfiguration if

- They can have logic sharing between the high speed mode and power saving mode for area consideration
- We will explore more DLRS logic components in the future

Problem Formulation

Given

- (1) a circuit with DLRS adders and multipliers,
- (2) all possible reconfiguring options of DLRS adders and multipliers,
- (3) a DVFS scheme and corresponding voltage candidates

Object

- Determine optimal configurations under timing constraints in the circuit
- Subject to
 - the operating power is minimized

Proposed DLRS Designs

Low-Power Optimization Framework

Experimental Results

Chip

ILP-based Algorithm

Objective

 minimize total power consumption satisfying circuit timing constraint \blacksquare min: $\sum_{i=1}^{M} P_i$ $\blacksquare T_{I_i} < T_{c,constraint} \forall l_i \in L$ $\square T_{i} = \sum_{i=1}^{q} T_{i} + T_{other_fixed_gates}$ $\Box \sum_{i=1}^{2N} S_{i,i} = 1, \forall i \in M$ $\square P_i = \sum_{i=1}^{2N} S_{i,i} \times P_{i,i}, \forall i \in M$ $\square T_i = \sum_{i=1}^{2N} S_{i,i} \times T_{i,i}, \forall i \in M$

Proposed DLRS Designs

Low-Power Optimization Framework

Experimental Results

Experimental Results

- On 8-core, 2.40GHZ, Intel Xeon E5620 CPU, with 32GB memory, CentOS release 5.9 machine
- Operating voltage candidates are set to 0.8V, 0.9V, and 1V
- Three different timing constraints (i.e. tight, medium and loose) for each circuit
- Three benchmark circuits with 90nm technology are used

Circuit	# Components in Circuits							
Designs	Adder	Multiplier	Subtractor	Comparator	Divider			
HAL	2	6	2	1	0			
IDCT	16	20	10	0	2			
DIST	96	0	0	16	0			

Experimental Results

	Operating Timing Constraint	DVFS	DLRS/DVFS Joint					
Circuit Designs		Power Consumption (mW)	# Reconfigured DLRS adder (%)	# Reconfigured DLRS multiplier (%)	Power Consumpti on (mW)	Power Reductio n (%)	Area Overhe ad	
HAL	Tight	10.9864	o (o%)	6 (100%)	4.4244	59.73		
	Medium	9.8878	o (o%)	6 (100%)	4.3369	56.14	6.13	
	Loose	8.7891	2 (100%)	6 (100%)	4.1044	53.30		
IDCT	Tight	40.7069	12 (75%)	20 (100%)	16.2625	60.05	6.55	
	Medium	36.6362	13 (81.25%)	20 (100%)	16.0812	56.11		
	Loose	32.5655	16 (100%)	20 (100%)	15.7692	51.58		
DIST	Tight	42.0221	93 (96.8%)		23.9472	43.01	4.74	
	Medium	37.8199	96 (100%)		23.6352	37.51		
	Loose	33.6177	96 (100%)		23.6352	29.69		

Proposed DLRS Designs

Low-Power Optimization Framework

Experimental Results

We propose the concept of DLRS designs

- allows logic reconfiguration
- creates more flexibility to trade-off between performance and power consumption
- We propose a comprehensive framework for low power designs
 - smoothly integrate our DLRS designs with DVFS schemes
- Our methodology can obtain up to 60.05% power reduction with only 6.55% area overhead

