Design and Allocation of Loosely Coupled Multi-bit Flip-flops for Power Reduction in Post-Placement Optimization

Hyoungseok Moon \& Taewhan Kim Seoul National University

Outline

- Introduction
- Multi-bit flip-flop and related works
- New Style of Multi-bit Flip-flops
- Allocation Algorithm
- Minimizing power consumption
- Awareness of clock network
- Experimental Results
- Conclusion

So Many Flip-flops in SoC

Conventional Structure of Multi-bit Flip-flops

(a) Two 1-bit flip-flops

(b) 2-bit flip-flop

Related Works and their Limitations

Fixed Placement of Example Circuit

Conventional MBFF Allocation

New MBFF Allocation

Loosely Coupled Multi-bit Flip-flop

- Structure

- Flip-flops are merged via "Sharing nets"

(a) 2-bit LC-MBFF

(b) 3-bit LC-MBFF

Implementation of LC-MBFF

- The shorter, the better

(a)

(c)

The Shortest!

Feasibility Analyses of LC-MBFF

- 2-bit \& 3-bit LC-MBFF libraries implemented
- Wires for clock sharing net are modeled with PTM interconnect structure and 45 nm Open Cell Library

Dimension	Value
Width	0.08 um
Space	0.08 um
Thickness	0.20 um
Height	0.20 um
Length (δ)	$4 \mathrm{um} \sim 30 \mathrm{um}$

- HSPICE simulations with 500 MHz operating clock

Time Delay of LC-MBFF

Clock skew is very negligible

Power Consumption

- More power saving with closer flip-flops

(a) 2-bit LC-MBFF

(b) 3-bit LC-MBFF

LC-MBFF Allocation Rules

- Flip-flops in a close distance

$$
\delta(f) \leq D_{\max }^{k-b i t}
$$

- Flip-flops in the same level of clock tree
- Simpler resulting clock tree
- Routability of sharing nets

LC-MBFF Allocation Flow

Generate Merging Graph

(Clock tree unbalairce \& routability)

Select \& Merge 'Best' Flip-flops

Iterate if Any Edge Left

Example after the Final Update

Experimental Setup

- Algorithm implementation
- C++ \& GCC on Inte/ 64 -bit 2.6 GHz machine
- Physical design environment
- 45nm Open Cell Library \& PTM interconnect structure
- Synopsys Design Compiler \& IC Compiler
- 11 ISCAS89 \& IWLS2005 benchmark circuits
- 500 MHz operating clock frequency
- $D_{\text {max }}^{2-b i t}$ set as 30 um and $D_{\text {max }}^{3-b i t}$ as 20 um

Experimental Results

- 3.13\% more power saving on average
- With less than 1% interconnect area
[7] Z.-W. Chen and J.-T. Yan, "Routability-constrained multi-bit flip-flop construction for clock power reduction," Integration, the VLSI Journal, Jun. 2013.

Distribution of LC-MBFFs after Allocation

Impact of Additional Wire Length

Circuit	Total Wire Length	Added Wire Length	Added WL /Total WL	Total Wire Area	Total Circuit Area	Impacted Area
s1423	5238	386	7.4%	200.12	1064	1.4%
s15850	8761	502	5.7%	237.01	1549	0.9%
s5378	12844	752	5.9%	415.13	2168	1.1%
s13207	17052	1288	7.6%	529.46	3648	1.1%
s38584	84200	5254	6.2%	3075.19	16266	1.2%
s38417	101362	6820	6.7%	3605.81	19710	1.2%
s35932	86014	7756	9.0%	3508.73	22049	1.4%
AES	32882	1636	5.0%	540.15	8893	0.3%
AC97	28321	1334	4.7%	878.29	6368	0.6%
ETHNET	2325506	38688	1.7%	21920.98	121539	0.3%
DES3	2351961	42130	1.8%	34495.96	160824	0.4%

With simplified clock tree, the actual area impact is much less

Conclusion

- Loosely-coupled Multi-bit Flip-flop
- New structure of multi-bit flip-flop
- No timing/area constraints
- LC-MBFF Allocation Algorithm
- Considering power, clock tree \& routability
- More clock power saving
- 3.13% more clock power saving than the existing work

Thank you for your attention!

A1. Merging Distance Limit

- $D_{\max }^{2-b i t}$ set as $\mathbf{3 0} \mathbf{u m}$ and $D_{\max }^{3-b i t}$ as $\mathbf{2 0 u m}$

