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Data Analytics Challenge
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Data center for future big-data-

oriented society:

1. Leaving data outside a nation will

face serious cyber-security

concern

2. Processing data inside a nation by

traditional Giga-scale system has

high cost

Bandwidth at 100 Gps with

Space of 20,000 sq. ft. Power

of 68 MW and cost of 100M-

USD !!!



Challenge of Data Oriented Computing

Data migration between core and memory is dominated in big-

data application: Memory wall = power wall + bandwidth wall

1.Bandwidth wall:

• Technology limitation: non-scalable 2D interconnect

• System limitation: Configurability

2. Power wall:

• Technology limitation: leakage power of DRAM/SRAM

• System limitation: Low-complexity in-memory analytics
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A solution with system and technology co-design



Solution?

Big Memory Sea (Non-volatile Memory)

Thousands Small 

Accelerator Cores 

High Bandwidth, Energy-efficient 

Reconfigurable I/Os
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Existing In-memory Computing Techniques

Flash chips
Control & in-

memory logic

PCB level in-memory accelerators

Micron M500 SSD - Micron Technology, Inc.
http://www.micron.com/products/solid-state-storage/client-ssd/m500-ssd

• Still limited I/O between

memory/storage to in-memory logic

(up to 256/512 due to packaging

limitation)
• PCB level interconnect has high power

overhead: 30pJ/bit/cm compared to on-

chip 40fJ/bit/mm

• Long interconnect trail incurs longer RC

delay on PCB which impacts on the

throughput.

• In-memory logic implemented in

CMOS technology, which incurs large

leakage power
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Existing In-memory Computing Techniques

Cell-level in-memory accelerators

with fixed simple function

Matsunaga, Shoun, et al. "MTJ-based nonvolatile logic-in-memory

circuit, future prospects and issues." Proceedings of the Conference on

Design, Automation and Test in Europe. European Design and

Automation Association, 2009.

Features:

• In each cell simple logic is

implemented

• Read out results directly

Drawbacks:

• Cell structure becomes much more

complicated thus area overhead is

overwhelming

• Low utilization efficiency of in-

memory logic since they cannot be

shared (dedicated to their cells only)

• Simple functions only (limited by

circuit area for each cell)
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Non-volatile In-Memory Accelerator 
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Motivation: Large portion of matrix multiplication is

needed in compressive neural network machine

learning.
• 64.62% of ELM training time are matrix

multiplication.

• Compressive sensing 𝐹 = 𝛹𝑋 is fully based on

matrix multiplication.

Operation in accelerator: All matrix multiplication

operation including 𝑋𝐴,𝐻𝑇𝑇 in ELM, and 𝐹 =  𝛹𝑋 in

compressive sensing.

Why RRAM but not CMOS (GPU or ASIC):
• Logic operation can be done faster with less

dynamic power consumption.

• Eliminate static power with non-volatile memory.



RRAM and RRAM Crossbar (Memristor) 

 Resistive RAM (RRAM)
device
 Two-terminal non-volatile

memory device
 Doping wall that

separates high resistance
material and low
resistance material

 Doping wall can be moved
by voltage/current à
program overall
resistance

 Crossbar structure
 Horizontal wires (top

layer) for input
 Vertical wires (bottom

layer) for output
 RRAM (middle layer) at

cross-points resistances

 Intrinsic
implementation for
matrix-vector
multiplication
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RRAM-crossbar based In-memory 
Accelerator (XIMA)

• RRAM crossbar enables

in-memory logic linked by

distributed control-bus in

pairs

• Digitization at output with

paralleled comparators

• With additional

encoder/decoder, one can

develop matrix-vector

multiplication based on

distributed in-memory

accelerator (XIMA) Binary interface
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Communication Protocol

• SW (store word) instruction is to write data into RRAMs in data

(conventional write) or in-memory logic (logic configuration).

• LW (load word) instruction performs as conventional read operation.

• ST (start) instruction means to switch on the logic block for computing

after computation setup.

• WT (wait) operation is to stop reading from instruction queue during

computing.

Traditional read/write

Additional in-memory 

computing
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Control-bus Design

external processor

LogicData

1

2

3

Address 
decoder

In-pair CMOS control bus

Instruction 
queue

Instruction 
decoder

Data path to 
data array

Data path to in-
memory logic

Row/Column 
to data array Row/Column to 

in-memory logic

SRAM array

Module Block decoder

Data array 0 0…0

In-memory logic 1 Layer index
Block index

Address decoder

In-layer address

Original data 
in this pair
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Original data

2. In data array

01010001

10110011
 ...

By multiple-layer RRAM 
crossbar logic

Processed 
data

3.  In data array

external 
processor

4.  Result read out
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• Instruction queue: store

instructions issued by external

processor.

• Instruction decoder: analyze

instructions on a first-come-first-

serve (FCFS) basis.

• Address decoder: obtain the row

and column index from the

instruction.

• SRAM array: store temporary

data such as computation results,

which are later written back to

data array. 11



Analog RRAM-crossbar

Features:

• Each RRAM denotes a multi-bit

value with different resistance.

• DACs/ADCs are designed for I/O.

• Multiple bit result can be read

directly.

Drawbacks:

• It is hard to configure an accurate

resistance of intermediate states,

causing large error.

• DACs/ADCs consumes too much

power.
Switching 

curve

Programing 

inaccuracy
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Proposed Binary RRAM-crossbar

Features:

• Each RRAM denotes only 1 or 0.

• Use sense amplifier in each bit-

line.

• Output of each bit-line is only 1

or 0.

• Threshold of sense amplifier

𝑉𝑡ℎ,𝑗 can be configured.

Merits:

• RRAM can be configured

accurately.

• Output result can be accurate

without ADCs

 
 
 

 

    

Word line

Bit line

WLi

BLj

Rij

Ij

VWL,i

SA SA SA SA
VBL,j

Ij

Vth,j
VOut,j

Rfixed

𝑂𝑗 =  
1, 𝑖𝑓 𝑉𝑗

𝐵𝐿 ≥ 𝑉𝑡ℎ,𝑗

0, 𝑖𝑓 𝑉𝑗
𝐵𝐿 < 𝑉𝑡ℎ,𝑗
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XIMA Matrix-Vector Multiply Accelerator

Target: matrix-vector

multiplication with binary

RRAM crossbar interface

Approach: utilize 3-step

digital RRAM crossbar

instead of analogous

crossbar

Size of RRAM crossbar is

𝑁 × 𝑁 , where 𝑁 is the

maximum possible result.

xi,1
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xi,3

xi,N

φ1,j

φ2,j

φ3,j

φN,j

φ1,j

φ2,j

φ3,j

φN,j
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φ2,j

φ3,j
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O1,0 O1,1 O1,2 O1,N-1

Overall flow

[1 1 0 1 1 1 1 1][1 1 1 1 1 0 0 1] T
 1111100000001000101

Inner product by 

digitizing

transition detection by 

XOR 

N to log(n) encoding by 

encoder
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XIMA Matrix-Vector Multiply Accelerator I

Step 1: Digitizing
• Identical columns but with different

readout threshold 𝑉𝑡ℎ.

• Ladder-like threshold voltages 𝑉𝑡ℎ to

identify the result:

𝑉𝑡ℎ,𝑘 =
2𝑘 + 1 𝑉𝑟𝑔𝑜𝑛𝑅𝑠

2

𝑂1,𝑘 =  
1, 𝑘 ≤ 𝑠
0, 𝑘 > 𝑠

1
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Threshold voltage

Result voltage

For example, the output that corresponds to 5 is 11111000 (𝑁 = 8).

Important Property:

For the inner-product result s,

the first 𝑠 bits are 1 and the rest

(𝑁 − 𝑠) bits are 0 (𝑠 <= 𝑁).

0 1 2 3 4 5 6 7 8
00000000

10000000

11000000

11100000

11110000

11111000

11111100

11111110

11111111

Column voltage

C
o

lu
m

n
 r

e
s
u

lt

Result of 5
I/O curve

15



• The result is indicated by transition bit

XIMA Matrix-Vector Multiply Accelerator II

111110000

Fifth bit

Step 2: XOR

result 0 1 0

First bit 1 1 0

Second

bit

1 0 0

 Transition occurs when there is no current! For example, the output that

corresponds to 11111000 is 00001000

(𝑁 = 8).

• Detect the transition bit by XOR (⊕)

adjacent bits

First bit inverse + Second bit
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O1,0

O1,1

O1,1

O1,2

O2,0

O2,1

O1,N-1

1
O2,N-1

Implemented by AND gate.



Step 3: Encoder
• Pre-configured binary in each row

• Only one row can be active due to

transition output of XOR layer

• Row-select to encode then

transition to binary

XIMA Matrix-Vector Multiply Accelerator III

Encoding by row selection

 Second step output:
• High at the transition

• low for the rest

8-3 encoder

For example, the output that corresponds to

00001000 is 101 (𝑁 = 8).
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Step 2 output Step 3 output

10000000 001

01000000 010

00100000 011

00010000 100

00001000 101

00000100 110

00000010 111

00000001 000

Look-up table of 8-3 encoder



Extension for Real-value Multiplication

130, 85, 49,… 23 ∗ [1,1,0,… , 1]𝑇

8-bit data * 16 8-bit data * 16

• Adders are needed in

CMOS-ASIC.

• Apply 3-step binary

multiplication for the

same bit of 16 data.

• Only need 3x12-bit

adders instead of 15.

• For N-dimensional data,

reduce from (N-1) adders to

(log𝟐𝑵− 𝟏)

1

1

0

1

1st bit of 130

O1,0 O1,1 O1,2 Ali

1st bit of 85

1st bit of 49

1st bit of 23

10000010

01010101

00110001…
00010111

(130)

(85)

(49)

(23)

• Result of 1st bit:

0, 1, 1, … 1 ∗ 1,1,0, … , 1 𝑇 = 𝟏𝟏𝟎𝟏(𝟏𝟑)

1  1  0  1
1  0  1  0

0 1 1  0

0 1 1  0

result of the 1st bit 

result of the 2nd bit 

result of the 8th bit 

result of the 3rd bit 

+

inner-product result 

1  1  0  1
1  0  1  0

0 1 1  0

0 1 1  0

1st bit 

2nd bit 

8th bit 

3rd bit 

+

inner-product result 

0 1 1  18th bit 4th bit 

1  1 1  0
1  1 0  0

1  0  0  1

7th bit 

6th bit 

5th bit 
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XIMA for Machine Learning

Working flow:

 Step 1: offline unsupervised training for Boolean first neural layer Ψ

 Step 2: configure Ψ distributedly to 3-step digitalized RRAM by stacking

 Step 3: online ASIC incremental LSM training for second neural layer

 Step 4: perform recognition tasks

Merge Merge

M
e

rge

Merge Merge

Merge Merge

M
e

rge

Merge Merge

M
e

rge

Merge Merge

M
e

rge

M
erge

Matrix-vector 
product

Distributed submatrix-
subvector multiplication

Distributed intermediate 
results merge

H-tree-like 
distribution network

Sub- Input vector configurations 
(blue crossbars)

Sub- weight matrix 
configurations (red crossbars)

Layer-to-layer propagation 
of neural network

…
Benefits:

 1. distributed in-memory computing  high throughput

 2. RRAM decomposition  high fabrication feasibility

 3. Boolean Ψ optimization  crossbar compatibility with high performance

 4. non-volatile RRAM  low static power

CMOS comparators/
read-write circuits

Input data

Digitalizing

XOR

Encoding

CMOS comparators/
read-write circuits

Adder-merger

16x16 matrix-
multiplication

16x16 matrix-
multiplication
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Compare to CMOS-ASIC
• 2.86x faster

• 154x more energy efficient

• 100x smaller area

Compare to analog RRAM crossbar
• Almost the same computational time

• 10x worse energy efficient

• 160x smaller area

Variability Study

Experimental Setup: 328x356 * 356x64 Boolean Matrix
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Scalability Study

• We compare the performance

among CMOS-ASIC design, non-

distributed RRAM-crossbar design,

and distributed RRAM-crossbar

design.

• X-axis is the original image

dimension (number of pixels).

• Distributed RRAM-crossbar is the

best among three implementations.

• The EDP improvement compared to

CMOS-ASIC reduces from 514x to

196x with dimension increasing from

356 to 864, but still considerate.
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Embedding configuration Energy (nJ) Leakage (uW) Area (um2)

CMOS ASIC 5.6700 59 86650

RRAM crossbar 0.3324 - 54

CMOS ASIC 6.3504 66 97050

RRAM crossbar 0.3741 - 60

CMOS ASIC 6.8040 71 103980

RRAM crossbar 0.3993 - 65

CMOS ASIC 7.7112 81 117850

RRAM crossbar 0.4558 - 74

CMOS ASIC 8.8452 114 135180

RRAM crossbar 0.5228 - 84

• Hardware performance

• 15x faster (due to one cycle)

• 17x more energy efficient

with leakage elimination

• More than 100x smaller area

• Conclusion: the RRAM crossbar

with proposed Boolean

optimization overcomes the

power-performance dilemma and

enables both

• high performance first layer

dimension reduction/feature

extraction (less info loss),

• Power- and area-efficient

hardware.

Face-recognition Simulation Results
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Thank You!

http://www.ntucmosetgp.net

Email: haoyu@ntu.edu.sg 

Skype: hao.yu.ntu
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