

A Racetrack Memory Based In-memory Booth Multiplier for Cryptography Application

Tao Luo¹, Wei Zhang², Bingsheng He¹, Douglas Maskell¹

¹School of Computer Engineering, Nanyang Technological University

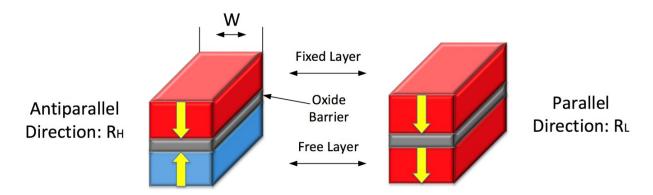
²Department of Electronic & Computer Engineering, Hong Kong University of Science and Technology

26th Jan 2016

- Motivations
- Background and Related Work
- Proposed Racetrack Memory Based Adder
- Proposed Booth Multiplier
- Experimental Results
- Conclusions

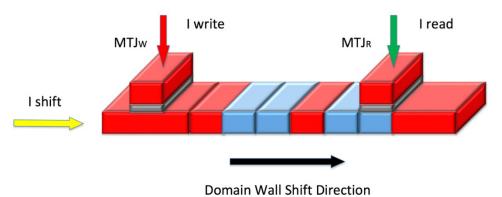
- Motivations
- Background and Related Work
- Proposed Racetrack Memory Based Adder
- Proposed Booth Multiplier
- Experimental Results
- Conclusions

Motivation


- Big-data scaled data center for cloud computing
 - Data density
 - Data security
- Asymmetric encryption schemes
 - Internet-based applications
 - Time and resource consuming
- Racetrack memory
 - High data density, non-volatility, low static power and high speed
 - Data storage medium in data center
- In-memory encryption for racetrack memory
 - Avoid racetrack memory access time
 - Reduce the I/O requirement

- Motivations
- Background and Related Work
- Proposed Racetrack Memory Based Adder
- Proposed Booth Multiplier
- Experimental Results
- Conclusions

Background: Racetrack Memory



Basic structure of vertical magnetic tunnel junction

- Magnetic tunnel junction (MTJ)
 - One ferromagnetic (FM) layer with fixed magnetization direction
 - One FM layer with free magnetization direction
 - An oxide barrier between the two FM layers
- Resistance of the MTJ
 - High resistance RH: The two FM layers have antiparallel direction
 - Low resistance RL: The two FM layers have parallel direction
 - Two different states: "0" and "1"

Background: Racetrack Memory

Basic structure of stripe of the racetrack memory

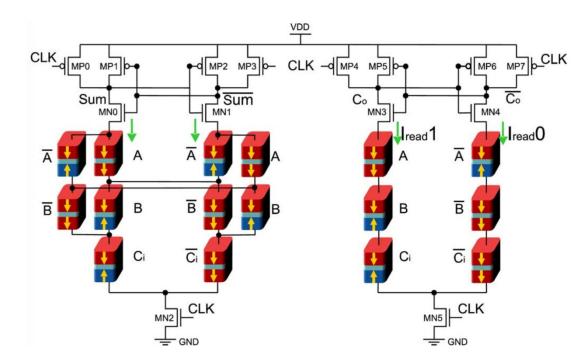
- Storage format
 - Each unit stores one bit
 - 50-100 nm wide for each unit
 - The stripe can be as long as 256 bits
- Read, write, shift
- Advantage: High data density
- Disadvantage: Long access time

Background: Racetrack Memory

 Racetrack memory has very small characteristic parameters:

- 1 F = 45nm

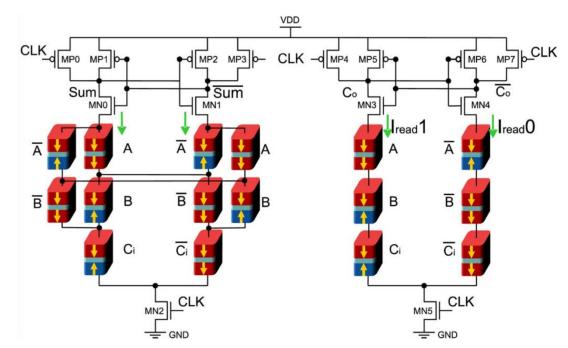
- Write and shift
 - Write latency is 10X as shift latency
 - Write energy is 20X as shift energy


Main Parameters in the racetrack memory model

Parameter	Description	Default value	
W_{RT}	Width of racetrack	$1\mathrm{F}$	
L_D	Length of the domain in a racetrack	$2\mathrm{F}$	
L_{RT}	Length of racetrack	128F	
T_{RT}	Thickness of racetrack	$6 \mathrm{nm}$	
W_{EN}	Write energy	1pJ	
W_{DE}	Write latency	$5\mathrm{ns}$	
S_{EN}	Shift energy	$0.051 \mathrm{pJ}$	
S_{DE}	S_{DE} Shift latency		

Related Work: Magnetic Full Adder

- Magnetic full adder
 - A spintronic full adder [Meng et al., EDL'05]
 - A non-volatile full adder [Matsunaga et al., APE'08]
 - Racetrack memory based adder [Trinh et al., TCAS-I'13]

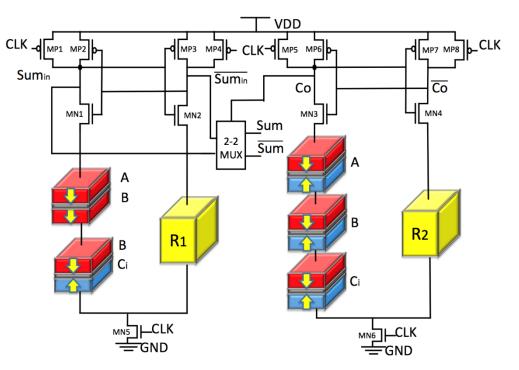


Magnetic full adder

Related Work: Magnetic Full Adder

- The previous MFA [Trinh et al., TCAS-I'13]
 - MTJ logic tree
 - "Sum" signal and "Co" signal are realized separately
- Drawbacks
 - Too many MTJs
 - Too many write operations lead to high power consumption

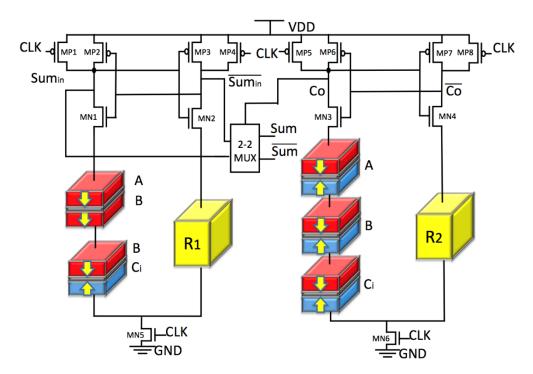
Magnetic full adder



- Motivations
- Background and Related Work
- Proposed Racetrack Memory Based Adder
- Proposed Booth Multiplier
- Experimental Results
- Conclusions

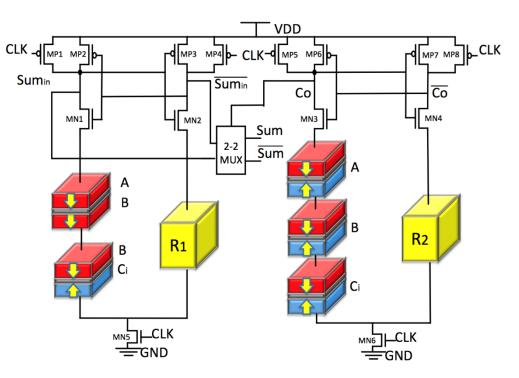
Proposed Racetrack Memory Based Adder: Generation of Carry Out Signal

- Pre-charge sense amplifier (PCSA) is used to read the data out
 - Best sensing reliability
 - High power efficiency
 - High speed performance
- Generation of carry out signal
 - $Co = A \cdot B + A \cdot Ci + B \cdot Ci$
 - A majority function



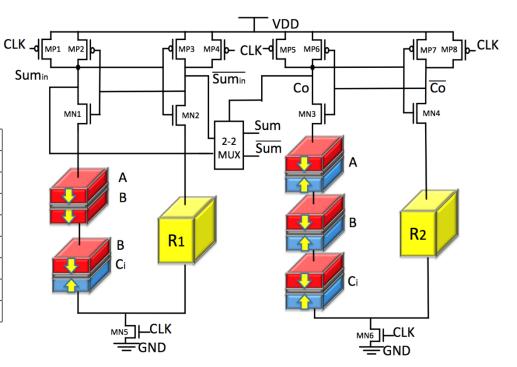
Proposed Racetrack Memory Based Adder: Generation of Carry Out Signal

Truth table of carry out signal


$\frown A$	B	C_i	R_{left}	R_{right}	C_o
0	0	0	$3R_L$	$2R_H$	0
0	0	1	$2R_L + R_H$	$2R_H$	0
0	1	0	$2R_L + R_H$	$2R_H$	0
0	1	1	$R_L + 2R_H$	$2R_H$	1
1	0	0	$2R_L + R_H$	$2R_H$	0
1	0	1	$R_L + 2R_H$	$2R_H$	1
1	1	0	$R_L + 2R_H$	$2R_H$	1
1	1	1	$3R_H$	$2R_H$	1

Proposed Racetrack Memory Based Adder: Generation of "Sum" Signal

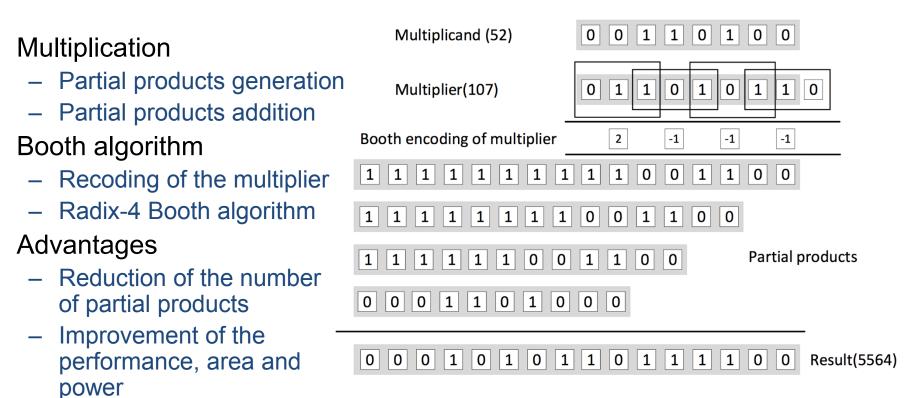
- Generation of "Sum" signal
 - Sum = $A \oplus B \oplus Ci$
 - A complicated logic function
- Combination with signal "Co"
 - The logic function of "Co" is a majority function
 - A/B and B/Ci to form the left branch
 - A MUX is added in the adder
 - "Co" is used as a select signal



Proposed Racetrack Memory Based Adder: Generation of "Sum" Signal

Truth table of "Sum" signal

A	B	C_i	R_{left}	R_{right}	C_o	Sum_{in}	Sum
0	0	0	$2R_L$	R_H	0	0	0
0	0	1	$R_L + R_H$	R_H	0	1	1
0	1	0	$2R_H$	R_H	0	1	1
0	1	1	$R_L + R_H$	R_H	1	1	0
1	0	0	$R_L + R_H$	R_H	0	1	1
1	0	1	$2R_H$	R_H	1	1	0
1	1	0	$R_L + R_H$	R_H	1	1	0
1	1	1	$2R_L$	R_H	1	0	1



- Motivations
- Background and Related Work
- Proposed Racetrack Memory Based Adder
- Proposed Booth Multiplier
- Experimental Results
- Conclusions

Proposed Booth Multiplier: The Operation of The Booth Multiplication

The operation of the Booth multiplication

Proposed Booth Multiplier: Partial Products Generation

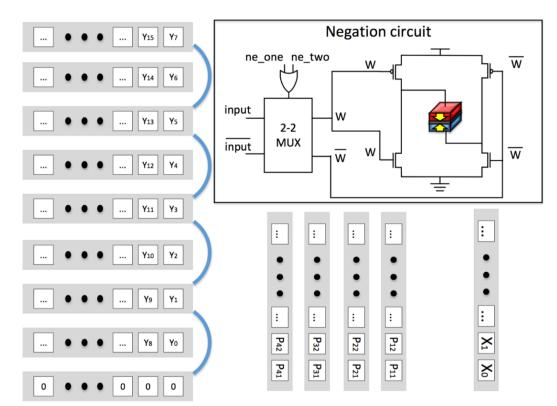
- Encoding and decoding
 - Y_{2i-1}, Y_{2i} and Y_{2i+1} are digits of the input blocks of the multiplier
 - "0" means the partial product equals to zero multiplying the multiplicand.
 - It is the same for "1*", "2*",
 "-1*" and "-2*".

Encoding and decoding regarding to block inputs

Y_{2i-1}	Y_{2i}	Y_{2i+1}	Partial Product
0	0	0	0* Multiplicand
0	0	1	1* Multiplicand
0	1	0	1* Multiplicand
0	1	1	2* Multiplicand
1	0	0	-2* Multiplicand
1	0	1	-1* Multiplicand
1	1	0	-1* Multiplicand
1	1	1	0* Multiplicand

Proposed Booth Multiplier: Partial Products Generation

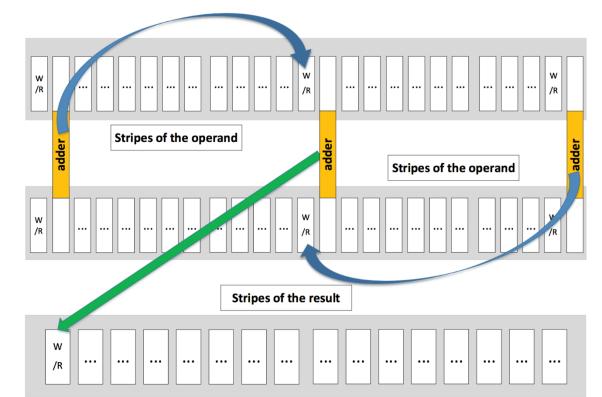
Control signals for the partial products generation


- Control signals
 - "zero" corresponds to "0*"
 - "one" corresponds to "1*"
 - "two" corresponds to "2*"
 - "ne_two" corresponds to "-2*"
 - "ne_one" corresponds to "-1*"

$$\begin{aligned} zero &= Y_{2i-1} \cdot Y_{2i} \cdot Y_{2i+1} + Y_{2i-1} \cdot Y_{2i} \cdot Y_{2i+1} \\ one &= \overline{Y_{2i-1}} \cdot \overline{Y_{2i}} \cdot Y_{2i+1} + \overline{Y_{2i-1}} \cdot Y_{2i} \cdot \overline{Y_{2i+1}} \\ two &= \overline{Y_{2i-1}} \cdot Y_{2i} \cdot Y_{2i+1} \\ ne_two &= Y_{2i-1} \cdot \overline{Y_{2i}} \cdot \overline{Y_{2i+1}} \\ ne_one &= Y_{2i-1} \cdot \overline{Y_{2i}} \cdot Y_{2i+1} + Y_{2i-1} \cdot Y_{2i} \cdot \overline{Y_{2i+1}} \end{aligned}$$

Proposed Booth Multiplier: Partial Products Generation

- Partial products are generated in parallel
- Five kinds of transformations
 - "remain"
 - "left-shifting"
 - "plusing-one"
 - "setting-to-zero"
 - "negation"
- Realization of the five transformations



Data organization for generation of partial products

Proposed Booth Multiplier: Addition of Partial Products

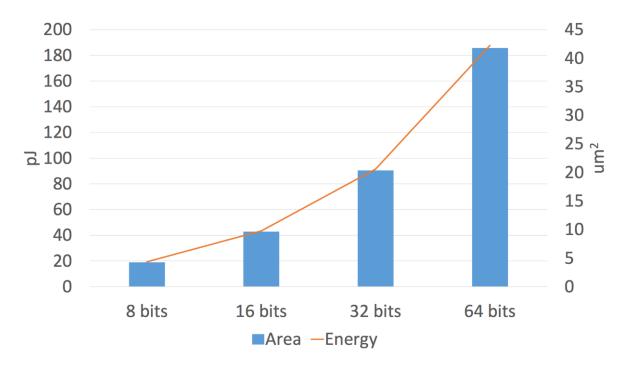
- Pipelined structure
 - Racetrack memory is used as the stage register
 - Pipeline can be very deep
- Advantages
 - Easy to realize
 - Efficient in terms of racetrack memory resource
 - High scalability

The pipelined addition based on racetrack memory

- Motivations
- Background and Related Work
- Proposed Racetrack Memory Based Adder
- Proposed Booth Multiplier
- Experimental Results
- Conclusions

Experimental Result: 1-bit magnetic full adder

- CMOS 45*nm* design kit
- A model of perpendicular magnetic anisotropy (PMA) racetrack memory based on CoFeB/MgO structure


	CMOS	Previous	Proposed
	FA	MFA	MFA
Delay	100 ps	180 ps	$240 \ ps$
Energy	15 fJ	7.6 fJ	19 f J
Write operation	NA	16	7
Area	$11.04um^2$	$3.36 um^2$	$1.142 um^2$

Comparison of the three adders

Experimental Result:

Racetrack memory based Booth multiplier

Energy per bit and area of our proposed multipliers with different input length

Conclusions

- Propose a compact racetrack memory based adder to reduce the number of write operation
- Design Booth encoder and decoder of the inmemory Booth multiplier for generating the partial products in parallel
- Implement a pipelined in-memory Booth multiplier for the encryption application in racetrack memory based data center

Thank you!

Questions?

