Optimization of Behavioral IPs

in Multi-Processor System-on-
Chips

Yidi Liu and Benjamin Carrion Schafer*
Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk®

Q THE HONG KONG
Q' POLYTECHNIC UNIVERSITY
&/ mEmT s

* High-Level Synthesis 101
* C-based SoC

* Target Architecture

* Motivational Example

e Behavioral IP (BIP) optimization flow
* Pre-Step : HLS DSE
Step 1: SoC generation
Step 2: System files generation
Step 3: HLS and Cycle-accurate simulation
Step 4: BIPs Optimizations

* Experimental Results

 Summary and Conclusions

ﬁnt A,B,C,D; \
int E,F;

main(){

int x;

X=A+B;

E=X*D;

F=(B+C)*X

Const
add32s:1

mul32s:1

Clock step1 1/freq

B C EEEN EEEEEEEEEEEEEEEENN]

Binding Clock step2

hl L] EEEN LB}

N Clock step3
Add#l EEEEEN EEEEN A EEEEEEEEEEEEEEESN

EEEEN. “--ll E F

P
X

Behavioral Description in C

Kchar A,B,C,D; \

char E,F;
::le]aai:)(().{ Delay:2T
X=A+B; FU
E=X* D; constraints
F=(B+C)*X;, | D
} +:1

o / g

L — @

3 cycles
Delay:1T

* Pareto-optimal (dominating) designs
* 3 main exploration knobs:

* Synthesis attributes (pragmas inserted in source code)
* Global synthesis options
* FU number

Area

Non optimal
@) designs
.N—‘\\. . ‘ ‘ .

0% & 4 o
Optimal designs \‘ ® o

N
N l '
.\
~
N
~

.\
~
\." .

Efficient frontier®-@_ ®

Latency

* Commercial Tools provide bus generators (AHB/AXI)
* |nputs:

1. Masters m
2. Slaves
3. bus1

Arbiter type (e.g. fixed, round robin)

4. Memory map SA
* Qutputs .

1. Synthesizable C code for bus and bus interface

» After HLS of the entire system = cycle-accurate
model is generated

™

> BUS definition

Synthesizable C code
s ams werEm | N inti;
: -_— sfer Eill_‘_ > MASTER definition for (i = 0; i < DSIZE; i++) {
enabic, abcli] = i:}
s — CBM_burst_write(0x1000ff00, abc, DSIZE);
module AMBA RHB SLAVE { .
:ll—_:;—cli;_‘:= 0100 f::EII;—‘__ DOffff & \””} SLAVE definition
} SA;

* Heterogeneous MPSoC
* Memory mapped shared bus

* BIPs instantiated loosely coupled HWAccs slaves

= Each BIP Optimized for performance separately BUT:
* Wait for master to start communication
* Need to wait for arbiter to pass control of bus to return data

Masterl Master2 MasterN

= =

read | “comp ity . r_ : ! .
. " Wait Computation Wait Computation Wait

Computation

e Observation 1:

Different Task mappings

for the same system
lead have the same
area, but different
performance.

e Observation 2: There is
a design D,,(fit), with
same performance, but
smaller area than using
fastest micro-
architecture designs

Amax

A

Area [um?]

min

Masters (M) = 1-4 / Slaves (S) = 4

M=1/5=4 M=2/5=4 M=3/5=4 M=4/5=4
______ Dws(init) ____fiz[init_ _*“‘&'ﬁ[_m_i.t) L Du)
oL Dyl fit)
¢
s sesse .Dm(ﬂt}
/ »
] Bw (it nnuuj;i :
D,(fit °° ’ LA LY 1] .'/
!] }d ’
I | A I A S
D,,,(small) D, (small) D,z(small) D,,.(small)
(a) (b) (c) (d)

Throughput

Area

Objective: Find the smallest micro-architecture of each BIP mapped as a HWacc
slave for the fastest SoC configuration (D,,(fit))

Pre-Step: HLS DSE - for each BIP in
the system.

Step 1: SoC Generation. Generate
systems with 1-N masters and
different tasks’ mappings using
fastest BIP micro-architecture.

Step 2: System Generation. Reads
bus definition file and creates
synthesizable SystemC files of
entire system.

Step 3: Cycle-accurate Simulation.
HLS on each process, generates
cycle-accurate model, compile
(g++) and execute.

Step 4: BIP Optimization. Read
cycle-accurate timing report of
each slaves’ idle time and select
smallest micro-architecture based
on slack.

BIPy/TB,, BIP;fI'Bi,..., BIPn/TBn

Bus Parameters: I
Type: AHB/AXI
Bus bitw=32bits o a—
arbiter: round robin

o -

Masters: M_, M._,...,M e e O
M W i | (Bus definition file?)
API_burst_write(0x1000ff00, fifo, DSIZE); —
API_single_write(0x1000ff00, outd); Bus Type: AHB/AXI

Bus bitwidth=32bits
Slaves: 51, 52"._'5“ Arbiter: round robin
Memaory map
while(1{ #Masters=M
API_poll_req|8stat); /* get status */ #Slaves =N
if (stat.req == API_WRITE_REQ) { — -
API_set_responselAPI_OKAY); |
array[num] = API_get_data();

num++;}
if{num == DSIZE) break; } Bus Generator
F— ——— [
Taski) Tramr
T:
Ta -
[

Slaves IE: SIF,, SIF,..., SIF
Bus, Top Masters IF: I'\.'ilFl,I"..zﬂlF2 I‘i‘HF
¥ *

High-Level Synthesis
Cycle-accurate SoC model

M

g-|+

Timing report slaves

A res
L3

* 3 main knobs
* Synthesis attributes (pragmas inserted in source code)
* Global synthesis options
* FU number = Used in this work

1. Synthesize each BIP without FU constraint file
(FCNT) :
* HLS tool allocates as many FUs to fully parallelize
description
* Generates FCNT indicating the type and number of FUs

2. Reduce FCNT file by X % until a single FU of teach
time is reached

* Given S Slaves > Generate SoCs for 1 to S masters
* For each configuration m all possible task mappings

* Tasks periodically repeating

* Execution order is not considered = Number of mappings
follow Stirling number of second kind S(s,m), with s=Slaves |

and m=[1,M]masters

* E.g. M=3 (masters), S=4(slaves)

S(s,m) = % z(—l)m_i(z) i’
i=0

IITTYY]
111173
"D, lsmall)
Masters (processors) P
Mappings 1 2 3 4
{D), 2,3,4}) | {(1,2),(3), @D}
{@2), (4, 3,4} | {(1,3), (2), @D}
{(1,2, [{(3), (1,2,D} [{(1,4D, (2),)} | {(1), (2),
Combinations | 3,4} | {(4), (1,2,3)} | {(1), (2, 3), D} | 3), D}
{1,2), 3,4} | {(1), 2,4, 3}
{(1,3), (2,4} | {(1), (@), 3,D}
{(1, 4), (2, 3)}

* Inputs:

* BIPs trade-off curves
(fastest design used)

e Bus parameters (AHB/AXI,
bus bitwidth, arbiter)

* Qutputs

e Bus definition file for bus
generator

* Synthesizable C code for
masters and slaves using
synthesizable bus
read/write APIs

* Tasks mappings following
Sterling number of second
kind for each system with
unique masters.

Bus Parameters:
Type: AHB/AX]

Bus bitw=32bits
Arbiter: round robin

Masters: M,, M M,,

ey

API_single_write(0x1000ff00, out0);

API_burst_write(0x1000ff00, fifo, DSIZE);

Slaves:S,, S,,...,S,

while(1){

API_poll_req(&stat); /* get status */

if (stat.req == API_WRITE_REQ) {
AP|_set_response(API_OKAY);
array[num] = API_get_data();
num++;}

if(num == DSIZE) break; }

Area

Latency

Bus Type: AHB/AXI
Bus bitwidth=32bits
Arbiter: round robin
Memory map
#Masters=M

#Slaves =N

~ _

e Commercial HLS tool bus
generator called with :

* bus definition file generated in
step

 Masters and slaves

Bus definition file

Bus Type: AHB/AXI
Bus bitwidth=32bits
Arbiter: round robin
Memory map
#Masters=M
#Slaves =N

for:
* Top level module
* Bus

Bus Generator
* Generates synthesizable files —

* Bus interfaces (masters and
slaves)

Slaves IF: SIF,, SIF,,..., SIF,
Masters IF: MIFI,MIFZ,...,MIF

Bus, Top

1.

2.

3

4.
5.

HLS is a single process synthesis method = synthesize
each synthesizable process

Call cycle-accurate model generator
* Input: the scheduling result of each process
e Qutput: cycle-accurate SystemC model of the entire system

: U;}J\date slaves’ cycle-accurate model to report time
when reading, computing or writing data

Compile (g++) and execute SoC model

Read timing report of each BIP
* Read, Write, computation and idle time of each BIP

* Computation latency Li=L ..4+LcomptLurite
* Extract for each BIP smallest idle (waiting) time W_._
= floor(L. +W

comp min)

* New adjusted Latency L,

— APl _poll_req(&stat);

if(stat_r.req=READ_REQ){
APl set response(OK);
API_write_datalodata);}

APl poll_reqg|&stat);
if(stat_r.req=WRITE_REQ){
APl _set_response(OK);
while(x<SIZE)
idata[x++]=APl_read data();}}

| | J

Wait Computation Wait

Computation Computation

* Choose micro-architecture with closes smallest
latency to new latency

Latency
adj

* Re-synthesize and re-simulate the new system with
each new micro-architecture

* Complex systems based on computationally intensive tasks
were formed by grouping individual benchmarks as HWacc

S2CBench benchmark suite (www.s2cbench.org)

* Experiments run on Intel dual 2.4 GHz Xeon with 16GBytes
of RAM running Linux Fedora release 19

HLS tool NEC’s CyberWorkBench v. 5.5
e Target technology Nangate’s 45nm’s Opencell
* Target synthesis frequency 100MHz

[Bench || DSE || S1 | S2 | S3 | S4 | S5 | 56 | 57 | S8 |
MD5C 1 T | 1 T | 1

Kasumi
Interp
FIR
Adpcm
Bsort

Tasks 3 3
Designs 16 19

1 1
1 1 1
1 1

1

B L0 =] 00 B ks
e

[[I S

4
1 18

Lo || = o

= L] = =
bt || =t = =

http://www.s2cbench.org/

OPT _IP vs. exhaustive search (BF)

BF tries all possible micro-architectures of HLS DSE result
Find the micro-architecture of each BIP for the fastest system
In all cases same throughput within 1% can be achieved

On average the area is reduced:
* BF=17.43%
e OPT _IP=13.21% (~5% larger than BF)

EXPERIMENTAL RESULTS: AREA COMPARISON BETWEEN EXHAUSTIVE SEARCH (BF')AND PROPOSED METHOD (OPT_IP) 1N %.

ST 52 53 54 S5

Masters|[[1 [2 | 3 1T [2 [3 1 [2 | 3 1T [2 [3 | 4 T [2 | 3]

BF 834 84.2] 958 68.0 | 69.6 | 69.8 | 87.0 | 88.1 | 96.4 | 73.9 | 747 | 77.3 | 77.3 | 934 | 943 [95.0 | 97.9

OPT_IH]| 834] 95.1| 95.8| 68.0 | 69.8 | 74.6 | 95.6 | 96.8 | 98.3 | 73.9 | 82.0 | 85.6 | 86.0 | 934 | 9043 | 954 | 987
56 S7 S8 Avg.

Masters|[1 [2 [3 | 4 | 5 1 [2 [3 [4 5 1 | 2 [3 | 4 [5 | 6

BF 70.5] 80.1] 80.1] 82.1 | 80.1 | 79.5 | 80.1 | 86.5 | 83.1 | 82.6 | 80.6 | 80.6 | 81.1 | 81.0 | 80.8 | 80.8 | 82.6

OPT_IH| 795| 86.4| 87.0| 91.3 | 90.3 | 79.5 | 85.8 | 86.7 | 88.8 | 90.2 | 80.6 | 80.6 | 86.6 | 86.6 | 86.6 | 89.5 | 86.8

Experimental Results : Running Time

 OPT_IP is on average ~16x faster than BF

RUNNING TIME RESULTS [MIN]
[Bench [ST | S2 [53 | 54 [S5 [S6 | 87 | S8 || Avg |
BF 102] 622] 297 | 10,518 | 1,543 2,752] 1,666] 5,045]] 2,770
OPT_IP| 27 | 15 | 20 | 56 45 170 | 193 | 828 || 169

* Presented a method to optimize the micro-
architecture of BIPs mapped onto heterogeneous
MPSoCs as loosely coupled HWAcc.

 Two main advantages of C-Based VLSI design
leveraged in this work:

1. HLS DSE to achieve micro-architectures of different
characteristics.

2. State of the art HLS tools allow the generate and
simulation (cycle-accurate) of entire SoCs.

* Results show that our proposed method leads to
good results while being much faster than an
exhaustive search.

www.eie.polyu.edu.hk/~schaferb/darclab

