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High Level Synthesis 101
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main(){
int x;
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}
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Benefits of HLS: Automatic Alternative 
Architecture Generation
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char A,B,C,D;
char E,F;
main(){
char X;
X = A + B;
E = X * D;
F = (B + C) * X;
}
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Micro-Architectural Design Space 
Exploration
• Pareto-optimal (dominating) designs
• 3 main exploration knobs:

• Synthesis attributes (pragmas inserted in source code)
• Global synthesis options
• FU number
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Non optimal 
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Optimal designs

Efficient frontier



C-Based SoC

• Commercial Tools provide bus generators (AHB/AXI)
• Inputs:

1. Masters
2. Slaves
3. Arbiter type (e.g. fixed, round robin)
4. Memory map

• Outputs
1. Synthesizable C code for bus and bus interface

• After HLS of the entire system  cycle-accurate 
model is generated

Synthesizable C code

int i;
for (i = 0; i < DSIZE; i++) {
abc[i] = i;}
CBM_burst_write(0x1000ff00, abc, DSIZE);



Target Architecture

• Heterogeneous MPSoC
• Memory mapped shared bus
• BIPs instantiated loosely coupled HWAccs slaves

 Each BIP Optimized for performance separately BUT:
• Wait for master to start communication
• Need to wait for arbiter to pass control of bus to return data
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Motivational Example

• Observation 1 : 
Different Task mappings 
for the same system 
lead have the same 
area, but different 
performance.

• Observation 2: There is 
a design DM(fit), with 
same performance, but 
smaller area than using 
fastest micro-
architecture designs

Masters (M) = 1-4 / Slaves (S) = 4

Objective: Find the smallest micro-architecture of each BIP mapped as a HWacc
slave for the fastest SoC configuration (DM(fit))



Proposed Optimization Flow

• Pre-Step: HLS DSE - for each BIP in 
the system.

• Step 1: SoC Generation. Generate 
systems with 1-N masters and 
different tasks’ mappings using 
fastest BIP micro-architecture.

• Step 2: System Generation. Reads 
bus definition file and creates 
synthesizable SystemC files of 
entire system.

• Step 3: Cycle-accurate Simulation. 
HLS on each process, generates 
cycle-accurate model, compile 
(g++) and execute.

• Step 4:  BIP Optimization. Read 
cycle-accurate timing report of 
each slaves’ idle time and select 
smallest micro-architecture based 
on slack.



Pre-Step : HLS DSE

• 3 main knobs
• Synthesis attributes (pragmas inserted in source code)
• Global synthesis options
• FU number  Used in this work

1. Synthesize each BIP without FU constraint file 
(FCNT) :
• HLS tool allocates as many FUs to fully parallelize 

description
• Generates FCNT indicating the type and number of FUs

2. Reduce FCNT file by X % until a single FU of teach 
time is reached



Step 1 : SoC Generation

• Given S Slaves  Generate SoCs for 1 to S masters

• For each configuration m all possible task mappings 
• Tasks periodically repeating
• Execution order is not considered  Number of mappings 

follow Stirling number of second kind S(s,m), with s=Slaves 
and m=[1,M]masters

• E.g. M=3 (masters), S=4(slaves)
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Step 1 : SoC Generation con’t

• Inputs:
• BIPs trade-off curves 

(fastest design used)
• Bus parameters (AHB/AXI, 

bus bitwidth, arbiter)

• Outputs
• Bus definition file for bus 

generator
• Synthesizable C code for 

masters and slaves using 
synthesizable bus 
read/write APIs

• Tasks mappings following 
Sterling number of second 
kind for each system with 
unique masters. 

….



Step 2 : System Generation 

• Commercial HLS tool bus 
generator called with :
• bus definition file generated in 

step
• Masters and slaves  

• Generates synthesizable files 
for:
• Top level module
• Bus
• Bus interfaces (masters and 

slaves)



Step 3 :HLS and Cycle-accurate 
Simulation

1. HLS is a single process synthesis method  synthesize 
each synthesizable process

2. Call cycle-accurate model generator 
• Input: the scheduling result of each process
• Output: cycle-accurate SystemC model of the entire system

3. Update slaves’ cycle-accurate model to report time 
when reading, computing or writing data

4. Compile (g++) and execute SoC model
5. Read timing report of each BIP

• Read, Write, computation and idle time of each BIP



Step 4 : Slave (BIP) Optimizations

• Computation latency Li=Lread+Lcomp+Lwrite

• Extract for each BIP smallest idle (waiting) time Wmin

• New adjusted Latency Ladj= floor( Lcomp+Wmin)



Step 4 : Slave (BIP) Optimizations con’t

• Choose micro-architecture with closes smallest 
latency to new latency

• Re-synthesize and re-simulate the new system with 
each new micro-architecture 

Ladj



Experimental Setup

• Complex systems based on computationally intensive tasks 
were formed by grouping individual benchmarks as HWacc

• S2CBench benchmark suite (www.s2cbench.org)

• Experiments run on Intel dual 2.4 GHz Xeon with 16GBytes 
of RAM running Linux Fedora release 19

• HLS tool NEC’s CyberWorkBench v. 5.5

• Target technology Nangate’s 45nm’s Opencell

• Target synthesis frequency 100MHz

http://www.s2cbench.org/


Experimental Results : Area

• OPT_IP vs. exhaustive search  (BF)

• BF tries all possible micro-architectures of HLS DSE result

• Find the micro-architecture of each BIP for the fastest system

• In all cases same throughput within 1% can be achieved

• On average the area is reduced: 
• BF =17.43% 
• OPT_IP = 13.21% (~5% larger than BF)



Experimental Results : Running Time

• OPT_IP is on average ~16x faster than BF



Summary and Conclusions

• Presented a method to optimize the micro-
architecture of BIPs mapped onto heterogeneous 
MPSoCs as loosely coupled HWAcc.

• Two main advantages of C-Based VLSI design 
leveraged in this work:

1. HLS DSE to achieve micro-architectures of different 
characteristics.

2. State of the art HLS tools allow the generate and 
simulation (cycle-accurate) of entire SoCs.

• Results show that our proposed method leads to 
good results while being much faster than an 
exhaustive search.
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