
Optimization of Behavioral IPs 
in Multi-Processor System-on-

Chips

Yidi Liu and Benjamin Carrion Schafer#

Department of Electronic and Information Engineering
b.carrionschafer@polyu.edu.hk #



Outline

• High-Level Synthesis 101

• C-based SoC

• Target Architecture

• Motivational Example

• Behavioral IP (BIP) optimization flow
• Pre-Step : HLS DSE
• Step 1: SoC generation
• Step 2: System files generation
• Step 3: HLS and Cycle-accurate simulation
• Step 4: BIPs Optimizations

• Experimental Results

• Summary and Conclusions



High Level Synthesis 101

3

+,-,*,/
Delay
Area

int A,B,C,D;
int E,F;
main(){
int x;
X=A+B;
E=X*D;
F=(B+C)*X
}

Const
add32s : 1
mul32s : 1

Clock step1

Clock step2

freq

Clock step3

1/freq+

x +

x

D   A      B      C

E        F

Allocation

Scheduling

+

x +

x

D   A      B      C

Binding

Add #1

Mult #1



Benefits of HLS: Automatic Alternative 
Architecture Generation

4

S0

S1

S2

S0

S1

S2

AB

C

D

+ *

F

E

3 cycles

char A,B,C,D;
char E,F;
main(){
char X;
X = A + B;
E = X * D;
F = (B + C) * X;
}

＋

A B CD

X

FE

+ +

* *

Behavioral Description in C

+ : 1

* : 1

+ : 2

* : 2 1 cycle

Delay:2T

Delay:1T

RTL

FU

constraints

1

2



Micro-Architectural Design Space 
Exploration
• Pareto-optimal (dominating) designs
• 3 main exploration knobs:

• Synthesis attributes (pragmas inserted in source code)
• Global synthesis options
• FU number

Area

Latency

Non optimal 

designs

Optimal designs

Efficient frontier



C-Based SoC

• Commercial Tools provide bus generators (AHB/AXI)
• Inputs:

1. Masters
2. Slaves
3. Arbiter type (e.g. fixed, round robin)
4. Memory map

• Outputs
1. Synthesizable C code for bus and bus interface

• After HLS of the entire system  cycle-accurate 
model is generated

Synthesizable C code

int i;
for (i = 0; i < DSIZE; i++) {
abc[i] = i;}
CBM_burst_write(0x1000ff00, abc, DSIZE);



Target Architecture

• Heterogeneous MPSoC
• Memory mapped shared bus
• BIPs instantiated loosely coupled HWAccs slaves

 Each BIP Optimized for performance separately BUT:
• Wait for master to start communication
• Need to wait for arbiter to pass control of bus to return data

Master1

Process1

Process2

Master2

Process3

MasterN

ProcessX

ProcessY

…..

…..

AMBA AHB

Master IF Master IF Master IF

Process1

Slave IF

Process2

Slave IF

ProcessY

Slave IF



Motivational Example

• Observation 1 : 
Different Task mappings 
for the same system 
lead have the same 
area, but different 
performance.

• Observation 2: There is 
a design DM(fit), with 
same performance, but 
smaller area than using 
fastest micro-
architecture designs

Masters (M) = 1-4 / Slaves (S) = 4

Objective: Find the smallest micro-architecture of each BIP mapped as a HWacc
slave for the fastest SoC configuration (DM(fit))



Proposed Optimization Flow

• Pre-Step: HLS DSE - for each BIP in 
the system.

• Step 1: SoC Generation. Generate 
systems with 1-N masters and 
different tasks’ mappings using 
fastest BIP micro-architecture.

• Step 2: System Generation. Reads 
bus definition file and creates 
synthesizable SystemC files of 
entire system.

• Step 3: Cycle-accurate Simulation. 
HLS on each process, generates 
cycle-accurate model, compile 
(g++) and execute.

• Step 4:  BIP Optimization. Read 
cycle-accurate timing report of 
each slaves’ idle time and select 
smallest micro-architecture based 
on slack.



Pre-Step : HLS DSE

• 3 main knobs
• Synthesis attributes (pragmas inserted in source code)
• Global synthesis options
• FU number  Used in this work

1. Synthesize each BIP without FU constraint file 
(FCNT) :
• HLS tool allocates as many FUs to fully parallelize 

description
• Generates FCNT indicating the type and number of FUs

2. Reduce FCNT file by X % until a single FU of teach 
time is reached



Step 1 : SoC Generation

• Given S Slaves  Generate SoCs for 1 to S masters

• For each configuration m all possible task mappings 
• Tasks periodically repeating
• Execution order is not considered  Number of mappings 

follow Stirling number of second kind S(s,m), with s=Slaves 
and m=[1,M]masters

• E.g. M=3 (masters), S=4(slaves)

𝑆 𝑠,𝑚 =
1

𝑚!
 

𝑖=0

𝑚

(−1)𝑚−𝑖
𝑠

𝑘
𝑖𝑠



Step 1 : SoC Generation con’t

• Inputs:
• BIPs trade-off curves 

(fastest design used)
• Bus parameters (AHB/AXI, 

bus bitwidth, arbiter)

• Outputs
• Bus definition file for bus 

generator
• Synthesizable C code for 

masters and slaves using 
synthesizable bus 
read/write APIs

• Tasks mappings following 
Sterling number of second 
kind for each system with 
unique masters. 

….



Step 2 : System Generation 

• Commercial HLS tool bus 
generator called with :
• bus definition file generated in 

step
• Masters and slaves  

• Generates synthesizable files 
for:
• Top level module
• Bus
• Bus interfaces (masters and 

slaves)



Step 3 :HLS and Cycle-accurate 
Simulation

1. HLS is a single process synthesis method  synthesize 
each synthesizable process

2. Call cycle-accurate model generator 
• Input: the scheduling result of each process
• Output: cycle-accurate SystemC model of the entire system

3. Update slaves’ cycle-accurate model to report time 
when reading, computing or writing data

4. Compile (g++) and execute SoC model
5. Read timing report of each BIP

• Read, Write, computation and idle time of each BIP



Step 4 : Slave (BIP) Optimizations

• Computation latency Li=Lread+Lcomp+Lwrite

• Extract for each BIP smallest idle (waiting) time Wmin

• New adjusted Latency Ladj= floor( Lcomp+Wmin)



Step 4 : Slave (BIP) Optimizations con’t

• Choose micro-architecture with closes smallest 
latency to new latency

• Re-synthesize and re-simulate the new system with 
each new micro-architecture 

Ladj



Experimental Setup

• Complex systems based on computationally intensive tasks 
were formed by grouping individual benchmarks as HWacc

• S2CBench benchmark suite (www.s2cbench.org)

• Experiments run on Intel dual 2.4 GHz Xeon with 16GBytes 
of RAM running Linux Fedora release 19

• HLS tool NEC’s CyberWorkBench v. 5.5

• Target technology Nangate’s 45nm’s Opencell

• Target synthesis frequency 100MHz

http://www.s2cbench.org/


Experimental Results : Area

• OPT_IP vs. exhaustive search  (BF)

• BF tries all possible micro-architectures of HLS DSE result

• Find the micro-architecture of each BIP for the fastest system

• In all cases same throughput within 1% can be achieved

• On average the area is reduced: 
• BF =17.43% 
• OPT_IP = 13.21% (~5% larger than BF)



Experimental Results : Running Time

• OPT_IP is on average ~16x faster than BF



Summary and Conclusions

• Presented a method to optimize the micro-
architecture of BIPs mapped onto heterogeneous 
MPSoCs as loosely coupled HWAcc.

• Two main advantages of C-Based VLSI design 
leveraged in this work:

1. HLS DSE to achieve micro-architectures of different 
characteristics.

2. State of the art HLS tools allow the generate and 
simulation (cycle-accurate) of entire SoCs.

• Results show that our proposed method leads to 
good results while being much faster than an 
exhaustive search.



www.eie.polyu.edu.hk/~schaferb/darclab


