Multi-version Checkpointing for Flash File
Systems

Shih-Chun Chou

JOTNEWS™

Outline

Introduction
System Architecture

Multi-version Checkpointing for Flash File
Systems

Analysis and Experimental Results
Conclusion

2 La
SOUNEWS

Introduction(1/2)

Flash memory is widely adopted in various storage
systems.

e.g., multiple-level-cell (MLC)

However, their high bit error rates and low
endurance give rise to serious challenges on the
reliability issue.

Although stronger error correction codes can be
applied to enhance their reliabllity, they are less
capable of recovering flash page failures caused by
the increasing burst-error rates and decreasing
block endurance when a flash block has endured
more and more erases.

b

b

e La
SOTUNEWS

Introduction(2/2)

Out-place updating Block0 ~ Blockl Time
Innate overheads of flash A AL | VI A
memory B » v [A
Multiple versions being kept (; V3 AI'
in flash memory A’ 2.1

Such an observation motivates this work on how to
covert the drawback of the coexistence of multi-version
data into the advantage to enhance the reliability of
flash memory.

2 Lab
SOINEWS

System Architecture

Application Application e Application

Virtual File System

Conventional File Systems (e.g., ext3, Native Flash File System

NTFS, FAT32)

Yet Another Flash

Journaling Flash

File System
File System (JFFS
Flash Translation Layer Y () (YAFFS)
e e —
Memory Technology Device Layer
Flash Memory Device
Plane Plane Plane Plane
Plane Plane Plane Plane
Plane Plane Plane Plane
Plane Plane Plane Plane
Chip Chip Chip Chip

fNEWS

Multi-version Checkpointing fo
Flash File Systems

A checkpoint-based strategy to guarantee the data integrity
of the whole flash file system

minimal management and space overheads.
Main ideas

To utilize the co-existence fact of multiple versions of the same data,
due to out-place updates.

To maintain multiple checkpoints of the file system.
The technical problem falls on

how to maintain the checkpoints of a flash file system with minimized
space overheads.

how to roll a flash file system back to the most-recent consistent
version with minimized rollback overheads.

File 1 File 2 File 3
Chunk L1 €12 C13 Cr1 G2 Co3 C31 C32 C33
a, blclS'[dle [flS2 [g]h] i
jiY b? clSt{dlel| f1[S) [g]|hi
j | kY c S d? el flS2 [gl hlii
jel k|l clSE | 1" e | f ISy | g8l h |
m|k|clS*[1 [el| fl|S; | gel h | i
m{k[clSE[T Te [f1S [n¥Y] h i
m|lk|clSC[1]e f%SQf’ n| h|o
m|k|cl|S'|[I |e]|p*Sy | ng|] h| o
m|k|cl|SE| |]el]p]lSe q* h O, |
m|k|c|S°| 1 |e|pl|SY | q| he r?
milk | ciS°| | |e [p IS | q s r

Sy
4
Sy
S
S3
S

y S;6

4
Sg
I3
S%
Iy
S;

Lo
S;

G
G,

Cy
G

G
G,

S

2 La
SOTNEWS

Two-version checkpointing strategy

S,

S;

b

P,

Py

P

C

Py

P

e

P

Pe

Py

P

@ Checkpoint of file 1, file 2 and file3 at time t;

Sl SZ S3
P, [Py P.| [Py Pe| Pl | P, [Py P,
PP P |[P][P. [P]P, [P.|P
Checkpoint of file 1, file 2 and file3 at time t;
S, S, 3
p_lr P | |P [P |P]|P [P [P
Pl Pl Pl PP | [Py | P, P,

eckpoint of file 1, file 2 and file3 at time t,

An example with three 3-page (or 3-chunk) files in the flash
file system to elaborate how the two-version checkpointing
strategy works.

- La
SO TNEWS

The two-version Control Mechanism

Chunk Duplication

To avoid improper discarding of an early version when
a new checkpoint is made.

To duplicate the data of a chunk to another page
during the creating of a new checkpoint if this chunk
has not been updated after the previous checkpoint
was made.

Chunk Tracking

To prevent unnecessary scans of chunks/files on
recovering a file system back to a consistent version.

To know which chunks/files are updated after a
checkpoint is made.

b

2 Lab
SOTNEWS

An example of chunk duplication

File 1 File 2 File 3
ChunkCq 1C;5C1 3 €1C55C 3 C3,C3,C33 S, S, S,
thladblclS’ [d]lelf]SY [glh]i]Se C,

t [b clS [dlelf S; [[hilS; ¢, |Pj|Py|Pc| |Py|Pe|Ps| |Pg|Py|P
L Ljlk'c Slt2 d? e | f Séz glhli Séz Checkpoint of file 1, file 2 and file3 at time t,
[k[clsy [1elf]S [glh[ils; ﬂ

t, (M1 k[clS! [1[elf]S [glhlilse 51 >2 3

ts [m[k[c|S® [T]elf|Sy [nTh[ils €1 Pi|Po|Pe| |Pa Pe| Pr] |Pg| Ph) Py
ts [mIKk TS s [TTe 78, [aThTT]S; ©2|Pm| P|Pe] | Pi|Pe|Pe] | Po|Pr|Pr
tt mlklc Slté | | e’]"'IILS;6 nlh | o' S;6 Checkpoint of file 1, file 2 and file3 at time t.
t, (m[k[c]S" [T][e]pYS) [ndh'|o]lSy ﬂ . S S

ts [(m[k[c|Sp [11e'TplSy [g'lh [o4S; d 2 &

t : . ¢l [P P[P P[P [P, [P, [P,
tb [(m[k[c]SP |11 lplSy [qlh TrYSy Lmiki ey thel ol nlm
ty [m K] cIS™ [T TelplS:y [qlhyr S ColProv|Pie| Pe| | Pr|Pe|Po)| | Pq| P | P
to M1k’ 1 c Sltlo "Telp Sélo qlsyr S;w Checkpoint of file 1, file 2 and file3 at time t,

2 Lab
SOINEWS

An example of chunk tracking

The snapshot of files at time t,,

Checkpoints
Sl S2 S3
C=c,| p_ | P | P, P, | P. | P P | P, | P
fy

C=c,| P, | P. | P P. | P, | P, P. | P, | P,
' The pages whic . Updated Chunk Table i | Updated File Table
i are Up.da’re,d H, 2) ! ii spdated | H i
| after time t'; CTl C3 , CZ , C3 ; ii file after 1 A J

- - - ii time t'; FT] f2 f3
E The pages which CT2 C3,2 ii Ig:qfed H, R
, dare up.dq’re’d H,) ii file after FT f
 afterfime s | tlmeT92 _____ S 11

Recovery: Case 1

2 Lab
SOUNEWS

If the crashed chunk ¢; ; is not in CT, and

T [J
1.1 ﬁ:ollzchk CiftoCiq inC,.
¥ SSCRLPRLES WP ctEE :
m K ST e p S s r |8
C| Pm PPt [P PP P.| P,
C, Pw Pe P.] TP TPLT P, P, P

2 Lab
SOUNEWS

Recovery: Case 2

It the crashed chunk ¢; ; is in CT,,.

2.1 Roll back all files fi in FT, to C,.

>-<___=
ml K) C Sltlo I) e p Sélo q: S : r S;IO
I |
C1 IDm I:)k I:)c’ I:)I Pe’ Pf’ r Pn -P-h’-—El—-
C, Puw|Pe P P, P, P, ! P P, P
I I

2 Lab
SOUNEWS

Recovery: Case 3

It the crashed chunk ¢; . is in CT,.

3.1 Roll back all files f; in FT, to C, .
3.2 Roll back all files f; in FT, to C, .

m’ K| c S 1 e p Sia s oSy
A '/\ e —— I
C, Pw|Pe Pc TP TP Py '"Pq' PP

L Lab
SOTNEWS

The Experimental Setup(1/2)

Property Value

Chip size / block size / page size 512ZMB/ 128 KB/ 2 KB

Erase time / write/program time 3 ms / 900 pus.
Page read time [/ senal access ime 30 us / 25 ns/byte.

Endurance (P/E cycles) 5,000

- Lab
SO TNEWS

The Experimental Setup(2/2)

The flash memory device is made unreliable by
setting a data error rate of 10 as each chunk is
being accessed.

The Bonnie++ benchmark is repetitively run for
5,000 iterations for performance testing.

1,024 files (each of 8 MB size) are created with 2KB
chunk size.

The Postmark benchmark randomly generates 1,000
small files (whose sizes range from 500 bytes to 9.77

KB) and 500,000 random file I/O transactions (each
addressing a 512-byte chunk) for the experiments.

2 Lab
SOUNEWS

Lifetime with Bonnie++ benchmark

Checkpoint interval of 10,000.

Lifetime (the number of operations)

8e+006

7e+006

6e+006

5e+006

4e+006

3e+006

2e+006

1e+006

(I116180000) (116180000) (116180000)
1 1 1 1 m 1 1
N < T < Written chunks XXX |
Read chunks ©©YU

Fs-chkpt Raw-chkpt No-chkpt Fs-chkpt Raw-chkpt No-chkpt Fs-chkpt Raw-chkpt No-chkpt

2 checkpoints 3 checkpoints

4 checkpoints

b

2 La
SOTNEWS

Lifetime with Postmark benchmark

Checkpoint interval of 10,000.

(3350566) (3350566) (3350566)

500000 . . . T

450000 R e RS Written chunks &Xx34 |
) Read chunks XX
S 400000 [oo [o B .
=
2 350000 NN B N R 0o R AN -
S 300000 [NN RN -
£ 250000 |- B N E—— TN O s TN\ .
o
= 200000 - e R —— B oo oo B .
S
g 150000 |- e R O AR .
5 100000 [o BRG QG R A .
— 50000 F- 4o S e 0000 B 00 .

)<><>< 1 1

Fs-chkpt Raw-chkpt No-chkpt Fs-chkpt Raw-chkpt No-chkpt Fs-chkpt Raw-chkpt No-chkpt
2 checkpoints 3 checkpoints 4 checkpoints

L Lab
SOINEWS

The overhead

The extra performance overheads is limited within
2.2X against Rawchkpt

To get at least 172.00 times of relative lifetime
improvement against Raw-chkpt.

2.5e+007
Rollback Write 1
Rollback Read &xXxxx3
2et007 A Forwardcopied Write 833333223 -
Forwardcopied Read

1.5¢+007 [t :

le+007

R IRIRIRZLS -1
QIR0
QO0KKEKK
0“‘0.0“‘0“‘0.“0‘0
QIRERRRKKS % § % % %

xxxxx

FS-chkpt Raw-chkpt No-chkpt

Normalized Overheads (#chunks)

- Lab
SO TNEWS

Conclusion (1/2)

This paper proposes a multiversion checkpointing
strategy to guarantee the integrity and consistency
of flash file systems when some unrecoverable flash
pages OCcCur.

A control mechanism with the support of chunk
duplication and chunk tracking is designed

to avoid improper discarding of an early version on making
a new checkpoint

to prevent unnecessary scans/rollbacks of chunks/files on
file system recovery

2 Lab
SOUNEWS

Conclusion (2/2)

A recovery mechanism is then presented to restore a
corrupted file system back to a consistent version
after the corruption of flash pages

In the future
how to extend the proposed strategy to FTL designs.

the performance of applying different garbage collection
policies.

o Lab
JOTNEWS

Q&A

Thank you for your listening

