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Introduction(1/2)
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 Flash memory is widely adopted in various storage 
systems.

 e.g., multiple-level-cell (MLC)

 However, their high bit error rates and low 
endurance give rise to serious challenges on the 
reliability issue.

 Although stronger error correction codes can be 
applied to enhance their reliability, they are less 
capable of recovering flash page failures caused by 
the increasing burst-error rates and decreasing 
block endurance when a flash block has endured 
more and more erases.
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Introduction(2/2)

 Such an observation motivates this work on how to 
covert the drawback of the coexistence of multi-version 
data into the advantage to enhance the reliability of 
flash memory.
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System Architecture
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Multi-version Checkpointing for 

Flash File Systems
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 A checkpoint-based strategy to guarantee the data integrity 

of the whole flash file system 

 minimal management and space overheads.

 Main ideas

 To utilize the co-existence fact of multiple versions of the same data, 

due to out-place updates.

 To maintain multiple checkpoints of the file system.

 The technical problem falls on 

 how to maintain the checkpoints of a flash file system with minimized 

space overheads.

 how to roll a flash file system back to the most-recent consistent 

version with minimized rollback overheads.
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Two-version checkpointing strategy
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 An example with three 3-page (or 3-chunk) files in the flash 
file system to elaborate how the two-version checkpointing
strategy works.
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The  two-version Control Mechanism
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 Chunk Duplication

 To avoid improper discarding of an early version when 

a new checkpoint is made.

 To duplicate the data of a chunk to another page 

during the creating of a new checkpoint if this chunk 

has not been updated after the previous checkpoint 

was made.

 Chunk Tracking

 To prevent unnecessary scans of chunks/files on 

recovering a file system back to a consistent version.

 To know which chunks/files are updated after a 

checkpoint is made.
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An example of chunk duplication
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An example of chunk tracking
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Recovery: Case 1
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Recovery: Case 2
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If the crashed chunk ci,j is in CT2. 

2.1 Roll back all files fj in FT2 to C2 .
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Recovery: Case 3
13

If the crashed chunk ci,j is in CT1. 

3.1 Roll back all files fj in  FT2 to C1 .
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The Experimental Setup(1/2)
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The Experimental Setup(2/2)
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 The flash memory device is made unreliable by 
setting a data error rate of 10-4 as each chunk is 
being accessed.

 The Bonnie++ benchmark is repetitively run for 
5,000 iterations for performance testing.

 1,024 files (each of 8 MB size) are created with 2KB 
chunk size.

 The Postmark benchmark randomly generates 1,000 
small files (whose sizes range from 500 bytes to 9.77 
KB) and 500,000 random file I/O transactions (each 
addressing a 512-byte chunk) for the experiments.
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Lifetime with Bonnie++ benchmark
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 Checkpoint interval of 10,000.



2016/3/10

Lifetime with Postmark benchmark
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 Checkpoint interval of 10,000.
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The overhead
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 The extra performance overheads is limited within 
2.2X against Rawchkpt

 To get at least 172.00 times of relative lifetime 
improvement against Raw-chkpt.
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Conclusion (1/2)
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 This paper proposes a multiversion checkpointing
strategy to guarantee the integrity and consistency 
of flash file systems when some unrecoverable flash 
pages occur.

 A control mechanism with the support of chunk 
duplication and chunk tracking is designed

 to avoid improper discarding of an early version on making 
a new checkpoint

 to prevent unnecessary scans/rollbacks of chunks/files on 
file system recovery
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Conclusion (2/2)
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 A recovery mechanism is then presented to restore a 
corrupted file system back to a consistent version 
after the corruption of flash pages

 In the future

 how to extend the proposed strategy to FTL designs.

 the performance of applying different garbage collection 
policies.
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Q & A 

Thank you for your listening


