
Shih-Chun Chou

Multi-version Checkpointing for Flash File

Systems

2016/3/10

Outline

 Introduction

 System Architecture

 Multi-version Checkpointing for Flash File
Systems

 Analysis and Experimental Results

 Conclusion

2

2016/3/10

Introduction(1/2)
3

 Flash memory is widely adopted in various storage
systems.

 e.g., multiple-level-cell (MLC)

 However, their high bit error rates and low
endurance give rise to serious challenges on the
reliability issue.

 Although stronger error correction codes can be
applied to enhance their reliability, they are less
capable of recovering flash page failures caused by
the increasing burst-error rates and decreasing
block endurance when a flash block has endured
more and more erases.

2016/3/10

4

Introduction(2/2)

 Such an observation motivates this work on how to
covert the drawback of the coexistence of multi-version
data into the advantage to enhance the reliability of
flash memory.

Block 0 Block 1

A

A’1

A’1
A’2

Time

AV1

V2

V3

B
C

A’2A
 Out-place updating

 Innate overheads of flash
memory

 Multiple versions being kept
in flash memory

2016/3/10

System Architecture
5

…Application Application Application

Virtual File System

Conventional File Systems (e.g., ext3,

NTFS, FAT32)

Flash Translation Layer

Native Flash File System

Journaling Flash

File System (JFFS)

Yet Another Flash

File System

(YAFFS)

Memory Technology Device Layer

Chip

Plane
Plane
Plane
Plane

Chip

Plane
Plane
Plane
Plane

Chip

Plane
Plane
Plane
Plane

Chip

Plane
Plane
Plane
Plane

Flash Memory Device

2016/3/10

Multi-version Checkpointing for

Flash File Systems
6

 A checkpoint-based strategy to guarantee the data integrity

of the whole flash file system

 minimal management and space overheads.

 Main ideas

 To utilize the co-existence fact of multiple versions of the same data,

due to out-place updates.

 To maintain multiple checkpoints of the file system.

 The technical problem falls on

 how to maintain the checkpoints of a flash file system with minimized

space overheads.

 how to roll a flash file system back to the most-recent consistent

version with minimized rollback overheads.

2016/3/10

Two-version checkpointing strategy
7

 An example with three 3-page (or 3-chunk) files in the flash
file system to elaborate how the two-version checkpointing
strategy works.

2016/3/10

The two-version Control Mechanism
8

 Chunk Duplication

 To avoid improper discarding of an early version when

a new checkpoint is made.

 To duplicate the data of a chunk to another page

during the creating of a new checkpoint if this chunk

has not been updated after the previous checkpoint

was made.

 Chunk Tracking

 To prevent unnecessary scans of chunks/files on

recovering a file system back to a consistent version.

 To know which chunks/files are updated after a

checkpoint is made.

2016/3/10

An example of chunk duplication
9

2016/3/10

An example of chunk tracking
10

m’ K’ c l’ e p q s r

CT1 c3,3 c2,3 c3,1

CT2 c3,2

Updated Chunk TableThe pages which

are updated

after time t’5

Checkpoints

Updated File TableThe

updated

file after

time t’5

The

updated

file after

time t’9

The snapshot of files at time t10

= C1 Pm Pk Pc’ Pl Pe’ Pf’ Pn Ph’ Pi

= C2 Pm’ Pk’ Pc Pl’ Pe Pp Pq Ph Pr

C t5

C t9

S1
t10 S2

t10 S3
t10

t10

S1 S2 S3

H1

The pages which

are updated

after time t’9

H2

H1

H2

FT1 f2 f3

FT2 f3

2016/3/10

Recovery: Case 1
11

S1
t10 S2

t10 S3
t10

If the crashed chunk ci,j is not in CT1 and

CT2. 1.1 Roll back ci,j to ci,j,1 in C1 .

m’ K’ c l’ e p q s r

Pm Pk Pc’

Pm’ Pk’ Pc

C1
C2

Pl Pe’ Pf’

Pl’ Pe Pp

Pn Ph’ Pi’

Pq Ph Pr

2016/3/10

Recovery: Case 2
12

If the crashed chunk ci,j is in CT2.

2.1 Roll back all files fj in FT2 to C2 .

S1
t10 S2

t10 S3
t10m’ K’ c l’ e p q s r

Pm Pk Pc’

Pm’ Pk’ Pc

C1
C2

Pl Pe’ Pf’

Pl’ Pe Pp

Pn Ph’ Pi’

Pq Ph Pr

2016/3/10

Recovery: Case 3
13

If the crashed chunk ci,j is in CT1.

3.1 Roll back all files fj in FT2 to C1 .

3.2 Roll back all files fj in FT1 to C1 .

S1
t10 S2

t10 S3
t10m’ K’ c l’ e p q s r

Pm Pk P’c
Pm’ Pk’ Pc

C1
C2

Pl P’e P’f
P’l Pe Pp

Pn Ph’ Pi’

Pq Ph Pr

2016/3/10

The Experimental Setup(1/2)
14

2016/3/10

The Experimental Setup(2/2)
15

 The flash memory device is made unreliable by
setting a data error rate of 10-4 as each chunk is
being accessed.

 The Bonnie++ benchmark is repetitively run for
5,000 iterations for performance testing.

 1,024 files (each of 8 MB size) are created with 2KB
chunk size.

 The Postmark benchmark randomly generates 1,000
small files (whose sizes range from 500 bytes to 9.77
KB) and 500,000 random file I/O transactions (each
addressing a 512-byte chunk) for the experiments.

2016/3/10

Lifetime with Bonnie++ benchmark
16

 Checkpoint interval of 10,000.

2016/3/10

Lifetime with Postmark benchmark
17

 Checkpoint interval of 10,000.

2016/3/10

The overhead
18

 The extra performance overheads is limited within
2.2X against Rawchkpt

 To get at least 172.00 times of relative lifetime
improvement against Raw-chkpt.

2016/3/10

Conclusion (1/2)
19

 This paper proposes a multiversion checkpointing
strategy to guarantee the integrity and consistency
of flash file systems when some unrecoverable flash
pages occur.

 A control mechanism with the support of chunk
duplication and chunk tracking is designed

 to avoid improper discarding of an early version on making
a new checkpoint

 to prevent unnecessary scans/rollbacks of chunks/files on
file system recovery

2016/3/10

Conclusion (2/2)
20

 A recovery mechanism is then presented to restore a
corrupted file system back to a consistent version
after the corruption of flash pages

 In the future

 how to extend the proposed strategy to FTL designs.

 the performance of applying different garbage collection
policies.

2016/3/10

21

Q & A

Thank you for your listening

