MajorSat: A SAT Solver to Majority Logic

Speaker : Ching-Yi Huang
Authors: Yu-Min Chou, Yung-Chih Chen*, Chun-Yao Wang, Ching-Yi Huang National Tsing Hua University, Taiwan
*Yuan Ze University, Taiwan

Jan. 27, 2016

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Introduction (1/2)

- The majority function is a concise way to represent a Boolean expression
- The majority function, denoted as $\mathrm{M}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is an odd-input function which is evaluated as 1 iff more than half of inputs are 1
- E.g. $\mathrm{M}(a, b, c, d, e)=1$ if a, b, c are 1
- The majority function can express any logic represented by OR or AND operations
- E.g. $(a \vee b \vee c) \equiv M(a, b, c, 1,1)$
$(a \wedge b \wedge c) \equiv M(a, b, c, 0,0)$
- Recently, majority logic attracts more attentions and some synthesis algorithms and axiomatic system for majority logic have been proposed

Introduction (2/2)

- The Boolean satisfiability (SAT) problem can be expressed in various forms
- E.g. conjunctive-normal-form (CNF), disjunctive-normalform (DNF), the conjunction of majority functions, ...etc
- The conjunctive-normal-form (CNF) solvers for the SAT problem have had a remarkable achievement and have been widely used in the domains of synthesis and verification of logic circuit
- To express specific logic functions such as majority decision problems, majority functions can be more compact and expressive compared to traditional CNF

Motivation (1/2)

- It's impractical to convert the large-size majority function into the CNF for been solved by CNF SAT solvers
- The time required to convert the majority function to the CNF grows exponentially with the size of the majority function
- Modern CNF SAT solvers may be not able to store so many clauses
- E.g. M $(a, b, c, d, e)=(a \vee b \vee c) \wedge(a \vee b \vee d) \wedge(a \vee$ $b \vee e) \wedge(a \vee c \vee d) \wedge(a \vee c \vee e) \wedge(a \vee d \vee e) \wedge(b \vee c$ $\vee d) \wedge(b \vee c \vee e) \wedge(b \vee d \vee e) \wedge(c \vee d \vee e),\binom{n}{[n / 2\rceil}$ clauses, where n is the size of the majority function

Motivation (2/2)

- Therefore, we propose a new SAT solver MajorSat, which can directly solve the instances with majority functions and CNF clauses
- Definition 1: A majority expression, denoted as ME, is a conjunction of majority functions
- $\mathrm{M}(a, b, \bar{c}) \wedge \mathrm{M}(\bar{d}, \bar{e}, 0, f, g)$ is an ME

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Preprocessing

- Property 1 :
- A majority function with size n can be simplified to a majority function with size $(n-2)$ by removing two inputs that are either the same variable but with different phases, or 0 and 1, while preserving the same result
- E.g. $\mathrm{M}(\mathrm{a}, a, b, c, \bar{a}, 0,1)$ can be reduced to $\mathrm{M}(a, b, c, 0,1)$, and $\mathrm{M}(a, b, c, \theta, 4)$ can be further reduced to $\mathrm{M}(a, b, c)$

Conflicts Analysis (1/6)

- Property 2:
- The ME is UNSAT if it satisfies the following conditions simultaneously
- (1) There exists a majority function of size n with an input $x \in\{a, \bar{a}, 0,1\}$ appearing more than $\lfloor n / 2\rfloor$ times
- (2) There exists another majority function of size m with an input $y \in\{a, \bar{a}, 0,1\}$ appearing more than $\lfloor m / 2\rfloor$ times
- (3) $x=\bar{y}$
- E.g. An ME: $\mathrm{M}(a, a, a, b, c) \wedge \mathrm{M}(\bar{a}, \bar{a}, \bar{a}, \bar{a}, d, e, f)$

Conflicts Analysis (2/6)

- Definition 2: Given a majority function s, the minimum number of variables required to be assigned such that s is 1 is denoted as Min_{s}.
- E.g. For a majority function s : $\mathrm{M}(a, a, b, c, d), \mathrm{MinV}_{s}$ is 2 , i.e., $(a, b),(a, c)$, or $(a, d)=(1,1)$
- Property 3:
- Given two majority functions s and t, the $\mathrm{ME}=s \wedge t$ is UNSAT if
- s and t have the same variable set with size w, and the phase of each variable in s is opposite to the phase of that in t
- Both MinV_{s} and $\operatorname{Min}_{t}>\lfloor w / 2\rfloor$

Conflicts Analysis (3/6)

Example:

$\checkmark \mathrm{M}(a, b, c) \wedge \mathrm{M}(\bar{a}, \bar{b}, \bar{c})$ is UNSAT
$w=3, \operatorname{Min} V_{M(a, b, c)}=\operatorname{Min} V_{M(\bar{a}, \bar{b}, \bar{d})}=2>\lfloor w / 2\rfloor=1$
$\checkmark \mathrm{M}(a, b, c) \wedge \mathrm{M}(\bar{a}, \underline{\bar{b}}, \underline{\bar{b}}, \underline{\bar{b}}, \bar{c})$ doesn't work with property 3 $w=3, \operatorname{Min} V_{M(\bar{a} \cdot \bar{b}, \bar{b}, \bar{b}, \bar{d}}=1 \ngtr\lfloor w / 2\rfloor=1$
$\checkmark \mathrm{M}(a, b, c) \wedge \mathrm{M}(\bar{a}, \bar{b}, \bar{b}, \bar{b}, \bar{c}, \bar{c}, \bar{c})$ is UNSAT
$w=3, \operatorname{Min} V_{M(a, b, c)}=\operatorname{Min} V_{M(\bar{a}, \bar{b}, \bar{b} \cdot \bar{b}, \bar{c} \cdot \bar{c}, \bar{d}}=2>\lfloor w / 2]=1$

Conflicts Analysis (4/6)

- Property 4:
- Given a majority function of size n, resolving a literal a (assigning 0 to the literal a) that occurs k times in the function implies all the other literals that occur \geq $\lceil n / 2\rceil-k$ times for satisfying the majority function
- E.g. In $\mathrm{M}(a, a, b, b, \bar{c}, \bar{c}, d)(n=7)$, resolving the literal $a(a=0, k=2)$ implies both literals b and \bar{c} to 1
- Construct the implication graph based on Property 4
- The ME is UNSAT if there exists a stronglyconnected component in the implication graph containing nodes of a variable with opposite phases

Conflicts Analysis (5/6)

Consider the ME containing only 3-input majority functions:

$$
F=M(a, b, c) \wedge M(\bar{b}, \bar{c}, d) \wedge M(\bar{a}, \bar{c}, \bar{d})
$$

The potential conflicts hidden in the ME can be extracted by forming the following implications

$$
\begin{aligned}
& \bar{a} \rightarrow(b \wedge c), \bar{b} \rightarrow(a \wedge c), \bar{c} \rightarrow(a \wedge b) \\
& b \rightarrow(\bar{c} \wedge d), c \rightarrow(\bar{b} \wedge d), \bar{d} \rightarrow(\bar{b} \wedge \bar{c}) \\
& a \rightarrow(\bar{c} \wedge \bar{d}), c \rightarrow(\bar{a} \wedge \bar{d}), d \rightarrow(\bar{a} \wedge \bar{c})
\end{aligned}
$$

Conflicts Analysis (6/6)

Assigning variable $a=1$ leads to $\bar{a}=1$, and assigning variable $\bar{a}=1$ leads to $a=1$

Node a and node ā belong to the same strongly-connected component, which means the original formula $\mathrm{M}(a, b, c) \wedge \mathrm{M}(\bar{b}, \bar{c}, d)$ $\wedge \mathrm{M}(\bar{a}, \bar{c}, \bar{d})$ is UNSAT

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Searching with Conflict-driven Learning Technique

- Searching procedure
- Determine the values of variables one by one
- Record the reasons of conflicts
- Can help in pruning the search space

Majority Propagation

- Property 5 (Majority Propagation):
- During the searching procedure, when a majority function s of size n with k inputs have been assigned to 0
\Rightarrow Any unassigned literal in s that occurs $\geq\lceil n / 2\rceil-k$ times will be implied to 1 for satisfying s
- E.g. In $M(a, a, a, b, c, e, e, f, g)$, if literals e and g have been assigned $0(k=3)$, the literal a is implied to 1 since a occurs three times, which \geq [9/2]-3 $=2$

Learning Example (1/3)

The following example shows the procedure of the searching with conflict-driven learning technique:
$M(a, a, a, b, c, c, e, 1,1) \wedge M(\bar{a}, \bar{b}, c, e, 1) \wedge M(d, \bar{e}, f, g, h)$
$\sqrt{ }$ Decide $f=0$
$\mathrm{M}(a, a, a, b, c, c, e, 1,1) \wedge \mathrm{M}(\bar{a}, \bar{b}, c, e, 1) \wedge \mathrm{M}(d, \bar{e}, f, g, h)$ Decide $g=0$
$\mathrm{M}(a, a, a, b, c, c, e, 1,1) \wedge \mathrm{M}(\bar{a}, \bar{b}, c, e, 1) \wedge \mathrm{M}(d, \bar{e}, f, g, h)$
\downarrow Majority Propagation
Imply $d=1, \bar{e}=1$, and $h=1$

Learning Example (2/3)

$M(a, a, a, b, c, c, e, 1,1) \wedge M(\bar{a}, \bar{b}, c, e, 1) \wedge M(d, \bar{e}, f, g, h)$
Decide $c=0$
$M(a, a, a, b, c, c, e, 1,1) \wedge M(\bar{a}, \bar{b}, c, e, 1) \wedge M(d, \bar{e}, f, g, h)$

Conflict!

Learning Example (3/3)

The clause $(e \vee c)$ is learned, and is added to the original ME

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Variable Decision Order Heuristic (1/4)

Definition 3: threshold $_{m}$ and weight $t_{m}(x)$ are defined as $\lceil n / 2\rceil$ and the appearance time of the variable x in a majority function m of size n

Definition 4: The score function of variable x in a majority function m and a clause c is denoted as $\operatorname{score} M_{m}(x)$ and $\operatorname{score} C_{c}(x)$, which are
$\operatorname{scoreM}_{m}(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { is absent in } m \\ 1-\left(\text { threshold }_{m}-\text { weight }_{m}(x)\right) / \text { size of } m & \text { if } x \text { is in } m\end{array}\right\}$
$\operatorname{scoreC}_{c}(x)=\left\{\begin{array}{ll}0 & \text { if } x \text { is absent in } c \\ 1 & \text { If } x \text { is in } c\end{array}\right\}$
Definition 5: The score function $\operatorname{score}(x)$ is to decide the variable decision, which is
$\operatorname{score}(x)=\sum_{m \in M} s \operatorname{score} M_{m}(x)+\sum_{c \in C} \operatorname{scorec}_{c}(x)$

Variable Decision Order Heuristic (2/4)

- According to Definition 4, the scores of variables are related to their appearance times in majority functions
- Choosing the variable of a higher score can increase the probability of reaching the satisfiable branch
- E.g. Given an expression $\mathrm{F}: \mathrm{M}(a, a, a, b, b, \bar{c}, d) \wedge \mathrm{M}(\bar{b}$, $\bar{c}, \bar{d}) \wedge(\bar{a} \vee b \vee c)$,

$$
\begin{aligned}
& \operatorname{score}(a)=(1-(4-3) / 7)+0+1=13 / 7=39 / 21 \\
& \operatorname{score}(b)=(1-(4-2) / 7)+(1-(2-1) / 3)+1=50 / 21 \\
& \operatorname{score}(c)=(1-(4-1) / 7)+(1-(2-1) / 3)+1=47 / 21 \\
& \operatorname{score}(d)=(1-(4-1) / 7)+(1-(2-1) / 3)+0=26 / 21
\end{aligned}
$$

score $(b)>\operatorname{score}(c)>\operatorname{score}(a)>\operatorname{score}(d)$, which indicates that the variable decision order is $b>c>a>d$

Variable Decision Order Heuristic (3/4)

- Update scores of variables when conflicts happen
- Add 1 to the scores of variables on the paths from conflict nodes to decision nodes
- Recompute the variable decision order
- Lead the search to unsatisfiable branches
- Help in learning more conflict clauses

Variable Decision Order Heuristic (4/4)

$\operatorname{score}(a), \operatorname{score}(c), \operatorname{score}(e), \operatorname{score}(f)$, and $\operatorname{score}(g)$ are added by 1 after the conflict happens

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Majority Gate Transformation (1/2)

The characteristic function of a majority gate can be expressed by an ME

Majority Gate Transformation (2/2)

- Therefore, the characteristic function of a majority network can be also expressed as an ME

The satisfiablility of the above network can be evaluated through an ME:

$$
\begin{aligned}
& \mathrm{M}(a, b, c, \bar{d}, \bar{d}, \bar{d}, 1,1,1) \wedge \mathrm{M}(\bar{a}, \bar{b}, \bar{c}, d, d, d, 1,1,1) \\
& \wedge \mathrm{M}(d, e, f, \bar{g}, \bar{g}, \bar{g}, 1,1,1) \wedge \mathrm{M}(\bar{d}, \bar{e}, \bar{f}, g, g, g, 1,1,1) \\
& \wedge \mathrm{M}(d, i, j, \bar{k}, \bar{k}, \bar{k}, 1,1,1) \wedge \mathrm{M}(\bar{d}, \bar{i}, \bar{j}, k, k, k, 1,1,1) \\
& \wedge \mathrm{M}(g, i, k, \bar{m}, \bar{m}, \bar{m}, 1,1,1) \wedge \mathrm{M}(\bar{g}, \bar{i}, \bar{k}, m, m, m, 1,1,1) \\
& \wedge m
\end{aligned}
$$

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Experimental Environment

- Platform
- Intel Xeon ${ }^{\circledR}$ E5530 2.40GHz CentOS 4.6 platform with 64GB memory
- C++
- Benchmarks
- CNF benchmarks from SATLIB for verifying the correctness
- Randomly-generated benchmarks of ME with different scales for testing the efficiency

Experimental Results (1/2)

- CNF benchmarks with different numbers of variables and clauses

| Benchmarks | \|variable| | \|clause| | Golden Result | Solving Result | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | CNF | ME |
| uf20-91 | 20 | 91 | SAT | SAT | SAT |
| uf50-218 | 50 | 218 | SAT | SAT | SAT |
| uf75-325 | 75 | 325 | SAT | SAT | SAT |
| uf 100-430 | 100 | 430 | SAT | SAT | SAT |
| uf 125-538 | 125 | 538 | SAT | SAT | SAT |
| uf 150-645 | 150 | 645 | SAT | SAT | SAT |
| uuf50-218 | 50 | 218 | UNSAT | UNSAT | UNSAT |
| uuf75-325 | 75 | 325 | UNSAT | UNSAT | UNSAT |
| uuf100-430 | 100 | 430 | UNSAT | UNSAT | UNSAT |
| uuf125-538 | 125 | 538 | UNSAT | UNSAT | UNSAT |
| uuf150-645 | 150 | 645 | UNSAT | UNSAT | UNSAT |

Experimental Results (2/2)

- The experiments on randomly-generated ME benchmarks of different scales
- (number of variables)_(number of majority functions)_(size of majority function)
- The solving time of MajorSat is less than the time of converting ME into CNF coupled with the solving time of CNF solvers

Benchmarks	MajorSat		MiniSat		Lingeling	
	$t_{\text {sol }}(s)$	$t_{\text {conv }}(s)$	$t_{\text {sol }}(s)$	total (s)	$t_{\text {sol }}(s)$	total (s)
	2.37	1.37	>1000	>1000	>1000	>1000
$75 _75 _19$	9.51	5.53	>1000	>1000	>1000	>1000
$75 _75 _21$	12.38	22.80	>1000	>1000	>1000	>1000
$75 _75 _23$	20.16	97.58	>1000	>1000	>1000	>1000
$75 _75 _25$	42.37	410.07	>1000	>1000	>1000	>1000
$75 _75 _27$	118.14	>1000	-	>1000	-	>1000
$75 _75 _29$	158.01	>1000	-	>1000	-	>1000
$100 _100 _11$	0.15	0.04	3.55	3.59	10.70	10.74
$100 _100 _13$	2.81	0.14	475.10	475.24	404.40	404.54
$100 _100 _15$	12.94	0.43	>1000	>1000	>1000	>1000
$100 _100 _17$	59.59	2.10	>1000	>1000	>1000	>1000
$100 _100 _19$	140.05	8.10	>1000	>1000	>1000	>1000
$100 _100 _21$	894.18	30.36	>1000	>1000	>1000	>1000
$125 _125 _11$	2.88	0.04	895.80	895.84	237.60	237.64
$125 _125 _13$	11.08	0.17	>1000	>1000	>1000	>1000
$125 _125 _15$	152.87	0.59	>1000	>1000	>1000	>1000

Outline

- Introduction
- Solving Methods
- Conflict Analysis
- Conflict-driven Learning
- Variable Order Decision Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Conclusions

- We propose a new SAT solver - MajorSat - for solving majority logic
- Several properties about majority functions are also investigated to increase the efficiency of MajorSat
- The experimental results show that MajorSat is more efficient in solving majority expressions than CNF solvers

Thanks for Attention

- Q\&A

The Overall Flow of MajorSat

