MajorSat: A SAT Solver to Majority Logic

Speaker : Ching-Yi Huang

Authors: Yu-Min Chou, Yung-Chih Chen*, Chun-Yao Wang, Ching-Yi Huang

National Tsing Hua University, Taiwan

*Yuan Ze University, Taiwan

Jan. 27, 2016

Introduction

- Solving Methods
 - Conflict Analysis
 - Conflict-driven Learning
 - Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Introduction (1/2)

- The majority function is a concise way to represent a Boolean expression
- The majority function, denoted as M(x₁, x₂, ..., x_n), is an odd-input function which is evaluated as 1 iff more than half of inputs are 1

□ E.g. M(*a*, *b*, *c*, *d*, *e*) = 1 if *a*, *b*, *c* are 1

The majority function can express any logic represented by OR or AND operations

■ E.g.
$$(a \lor b \lor c) \equiv M(a, b, c, 1, 1)$$

 $(a \land b \land c) \equiv \mathsf{M}(a, b, c, 0, 0)$

 Recently, majority logic attracts more attentions and some synthesis algorithms and axiomatic system for majority logic have been proposed

Introduction (2/2)

- The Boolean satisfiability (SAT) problem can be expressed in various forms
 - E.g. conjunctive-normal-form (CNF), disjunctive-normalform (DNF), the conjunction of majority functions, ...etc
- The conjunctive-normal-form (CNF) solvers for the SAT problem have had a remarkable achievement and have been widely used in the domains of synthesis and verification of logic circuit
- To express specific logic functions such as majority decision problems, majority functions can be more compact and expressive compared to traditional CNF

Motivation (1/2)

- It's impractical to convert the large-size majority function into the CNF for been solved by CNF SAT solvers
 - The time required to convert the majority function to the CNF grows exponentially with the size of the majority function
 - Modern CNF SAT solvers may be not able to store so many clauses
 - E.g. M(*a*, *b*, *c*, *d*, *e*) = ($a \lor b \lor c$) ∧ ($a \lor b \lor d$) ∧ ($a \lor b \lor d$) ∧ ($a \lor c \lor d$) ∧ ($a \lor c \lor d$) ∧ ($a \lor d \lor e$) ∧ ($b \lor c \lor d$) ∧ ($b \lor c \lor e$) ∧ ($b \lor d \lor e$) ∧ ($c \lor d \lor e$), $\binom{n}{\lfloor n/2 \rfloor}$ clauses, where *n* is the size of the majority function

Motivation (2/2)

- Therefore, we propose a new SAT solver MajorSat, which can directly solve the instances with majority functions and CNF clauses
- Definition 1: A majority expression, denoted as ME, is a conjunction of majority functions
 - $M(a, b, \overline{c}) \land M(\overline{d}, \overline{e}, 0, f, g)$ is an ME

- Introduction
- Solving Methods
 - Conflict Analysis
 - Conflict-driven Learning
 - Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Preprocessing

Property 1:

- A majority function with size *n* can be simplified to a majority function with size (*n* 2) by removing two inputs that are either the same variable but with different phases, or 0 and 1, while preserving the same result
- E.g. M(a, a, b, c, a, 0, 1) can be reduced to M(a, b, c, 0, 1), and M(a, b, c, 0, 1) can be further reduced to M(a, b, c)

Conflicts Analysis (1/6)

Property 2:

- The ME is UNSAT if it satisfies the following conditions simultaneously
 - (1) There exists a majority function of size n with an input $x \in \{a, \overline{a}, 0, 1\}$ appearing more than $\lfloor n/2 \rfloor$ times
 - (2) There exists another majority function of size m with an input $y \in \{a, \overline{a}, 0, 1\}$ appearing more than $\lfloor m/2 \rfloor$ times
 - $\bullet \quad (3) \ x = \overline{y}$

• E.g. An ME: M(a, a, a, b, c) \land M(\overline{a} , \overline{a} , \overline{a} , \overline{a} , d, e, f) M(a, a, a, b, c) $3 > \lfloor 5/2 \rfloor = 2$ $4 > \lfloor 7/2 \rfloor = 3$

Conflicts Analysis (2/6)

- Definition 2: Given a majority function s, the minimum number of variables required to be assigned such that s is 1 is denoted as MinV_s.
 - E.g. For a majority function s: M(a, a, b, c, d), MinV_s is 2, i.e., (a, b), (a, c), or (a, d) = (1, 1)
- Property 3:
 - Given two majority functions s and t, the ME = $s \wedge t$ is **UNSAT** if
 - s and t have the same variable set with size w, and the phase of each variable in s is opposite to the phase of that in t
 - Both $MinV_s$ and $MinV_t > \lfloor w/2 \rfloor$

Conflicts Analysis (3/6)

Example:

✓ M(*a*, *b*, *c*) ∧ M(\bar{a} , \bar{b} , \bar{c}) is UNSAT *w* = 3, *MinV*_{*M*(*a*, *b*, *c*)} = *MinV*_{*M*(\bar{a} ', \bar{b} ', \bar{c})} = 2 > [*w*/2] = 1 ✓ M(*a*, *b*, *c*) ∧ M(\bar{a} , \bar{b} , \bar{b} , \bar{b} , \bar{c}) doesn't work with property 3 *w* = 3, *MinV*_{*M*(\bar{a} ', \bar{b} ', \bar{b} ', \bar{c})} = 1 × [*w*/2] = 1 ✓ M(*a*, *b*, *c*) ∧ M(\bar{a} , \bar{b} , \bar{b} , \bar{c} , \bar{c} , \bar{c}) is UNSAT *w* = 3, *MinV*_{*M*(*a*, *b*, *c*)} = *MinV*_{*M*(\bar{a} ', \bar{b} ', \bar{b} ', \bar{c} ', \bar{c} ', \bar{c})} = 2 > [*w*/2] = 1

Conflicts Analysis (4/6)

Property 4:

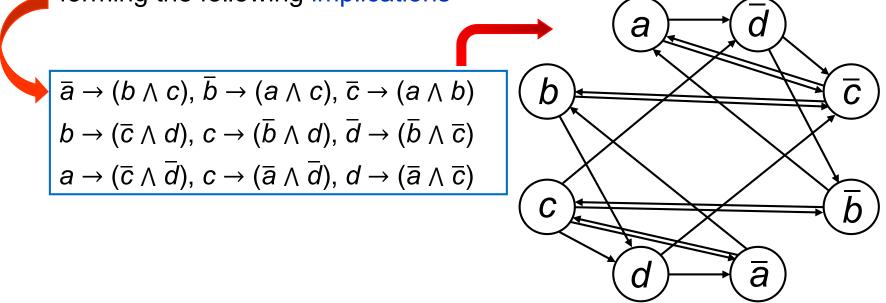
- Given a majority function of size *n*, resolving a literal *a* (assigning 0 to the literal *a*) that occurs *k* times in the function implies all the other literals that occur $\ge [n/2] k$ times for satisfying the majority function
- E.g. In M(*a*, *a*, *b*, *b*, \overline{c} , \overline{c} , *d*)(*n*=7), resolving the literal *a* (*a* = 0, *k* = 2) implies both literals *b* and \overline{c} to 1
- Construct the implication graph based on Property 4
 - The ME is UNSAT if there exists a stronglyconnected component in the implication graph containing nodes of a variable with opposite phases

Conflicts Analysis (5/6)

Consider the ME containing only 3-input majority functions:

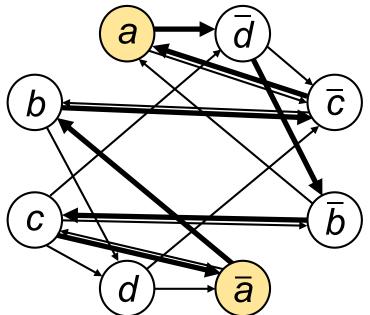
 $\mathsf{F} = \mathsf{M}(a, b, c) \land \mathsf{M}(\overline{b}, \overline{c}, d) \land \mathsf{M}(\overline{a}, \overline{c}, \overline{d})$

The potential conflicts hidden in the ME can be extracted by forming the following implications



Conflicts Analysis (6/6)

Assigning variable a = 1 leads to $\overline{a} = 1$, and assigning variable $\overline{a} = 1$ leads to a = 1



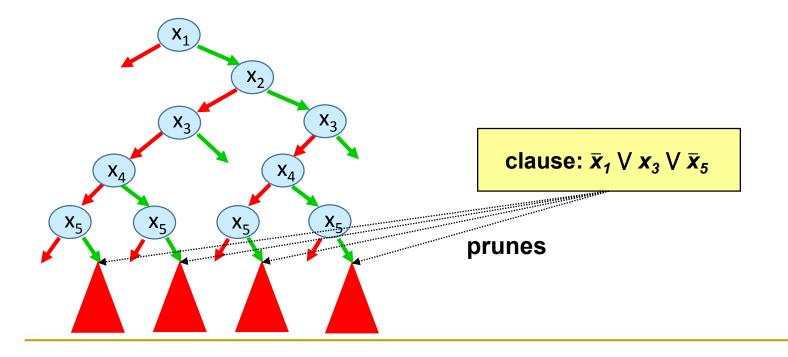
Node a and node \bar{a} belong to the same **strongly-connected component**, which means the original formula M(*a*, *b*, *c*) \land M(\bar{b} , \bar{c} , *d*) \land M(\bar{a} , \bar{c} , \bar{d}) is **UNSAT**

Introduction

- Solving Methods
 - Conflict Analysis
 - Conflict-driven Learning
 - Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Searching with Conflict-driven Learning Technique

- Searching procedure
 - Determine the values of variables one by one
 - Record the reasons of conflicts
 - Can help in pruning the search space



Majority Propagation

Property 5 (Majority Propagation):

- During the searching procedure, when a majority function s of size n with k inputs have been assigned to 0
- Any unassigned literal in s that occurs $\geq \lfloor n/2 \rfloor k$ times will be implied to 1 for satisfying s
- E.g. In M(a, a, a, b, c, e, e, f, g), if literals e and g have been assigned 0 (k = 3), the literal a is implied to 1 since a occurs three times, which $\ge [9/2] 3 = 2$

Learning Example (1/3)

The following example shows the procedure of the searching with conflict-driven learning technique:

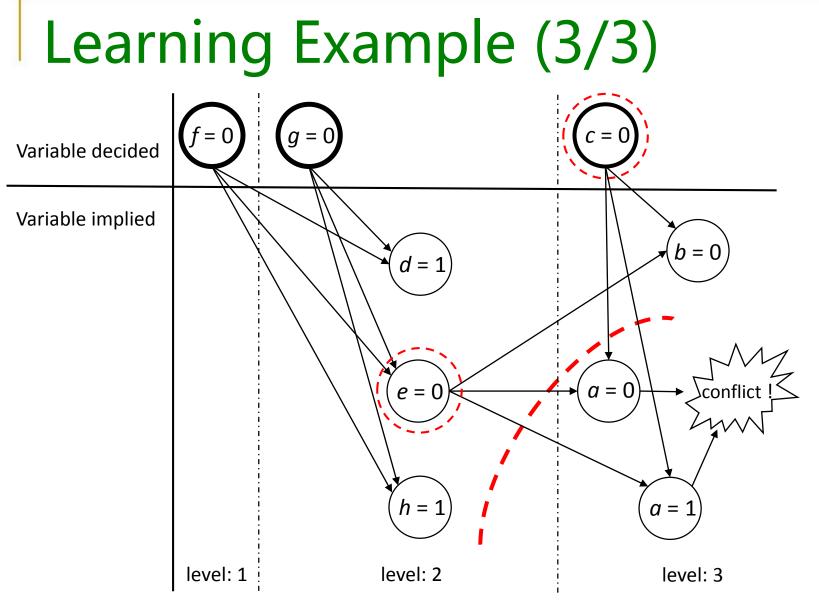
Imply d = 1, $\overline{e} = 1$, and h = 1

Learning Example (2/3)

 $M(a, a, a, b, c, c, e, 1, 1) \land M(\overline{a}, \overline{b}, c, e, 1) \land M(d, \overline{e}, f, g, h)$ $\bigcup Decide \ c = 0$

 $\mathsf{M}(a, a, a, b, \mathbf{c}, \mathbf{c}, \mathbf{e}, 1, 1) \land \mathsf{M}(\overline{a}, \overline{b}, \mathbf{c}, \mathbf{e}, 1) \land \mathsf{M}(d, \overline{e}, \mathbf{f}, \mathbf{g}, h)$

Majority Propagation
Imply
$$a = 1$$
, $\overline{a} = 1$, and $\overline{b} = 1$
Conflict !



The clause (e V c) is learned, and is added to the original ME

Introduction

Solving Methods

- Conflict Analysis
- Conflict-driven Learning
- Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Variable Decision Order Heuristic (1/4)

Definition 3: *threshold_m* and *weight_m(x)* are defined as $\lceil n/2 \rceil$ and the appearance time of the variable *x* in a majority function *m* of size *n*

Definition 4: The score function of variable x in a majority function m and a clause c is denoted as $scoreM_m(x)$ and $scoreC_c(x)$, which are

$$scoreM_{m}(x) = \begin{cases} 0 & \text{if } x \text{ is absent in } m \\ 1 - (threshold_{m} - weight_{m}(x))/\text{size of } m & \text{if } x \text{ is in } m \end{cases}$$

$$scoreC_{c}(x) = \begin{cases} 0 & \text{if } x \text{ is absent in } c \\ 1 & \text{If } x \text{ is in } c \end{cases}$$

Definition 5: The score function score(x) is to decide the variable decision, which is

$$score(x) = \sum_{m \in M} scoreM_m(x) + \sum_{c \in C} scoreC_c(x)$$

Variable Decision Order Heuristic (2/4)

- According to **Definition 4**, the scores of variables are related to their appearance times in majority functions
 - Choosing the variable of a higher score can increase the probability of reaching the satisfiable branch
- E.g. Given an expression F: M(a, a, a, b, b, c
 , d) ∧ M(b
 , c
 , d) ∧ (a ∨ b ∨ c),

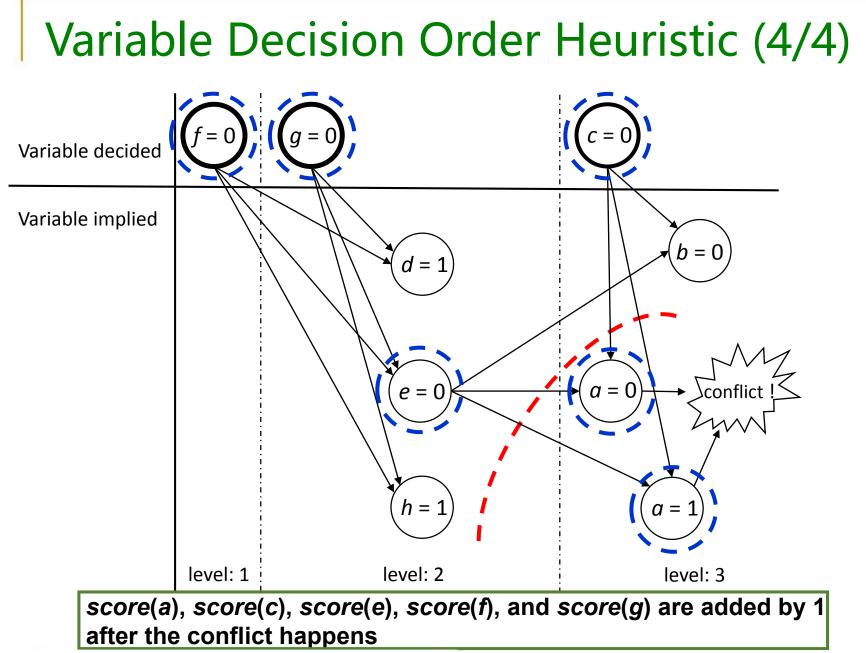
$$score(a) = (1 - (4 - 3)/7) + 0 + 1 = 13/7 = 39/21$$

 $score(b) = (1 - (4 - 2)/7) + (1 - (2 - 1)/3) + 1 = 50/21$
 $score(c) = (1 - (4 - 1)/7) + (1 - (2 - 1)/3) + 1 = 47/21$
 $score(d) = (1 - (4 - 1)/7) + (1 - (2 - 1)/3) + 0 = 26/21$

score(b) > score(c) > score(a) > score(d), which indicates that the variable decision order is b > c > a > d

Variable Decision Order Heuristic (3/4)

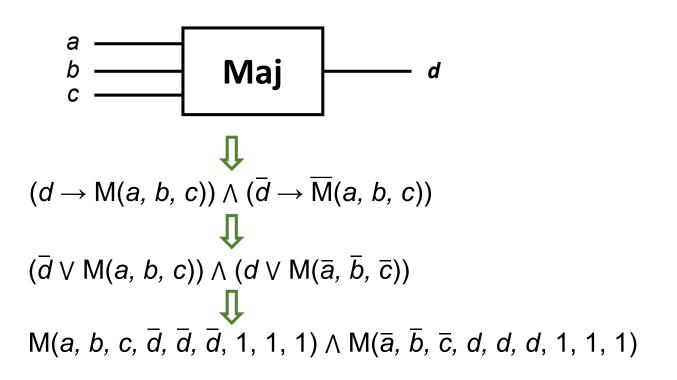
- Update scores of variables when conflicts happen
 - Add 1 to the scores of variables on the paths from conflict nodes to decision nodes
 - Recompute the variable decision order
 - Lead the search to unsatisfiable branches
 - Help in learning more conflict clauses



- Introduction
- Solving Methods
 - Conflict Analysis
 - Conflict-driven Learning
 - Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

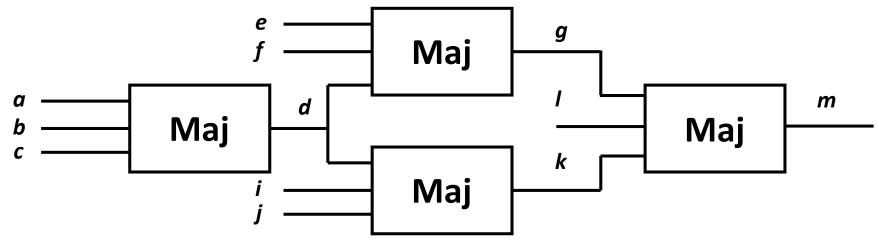
Majority Gate Transformation (1/2)

The characteristic function of a majority gate can be expressed by an ME



Majority Gate Transformation (2/2)

 Therefore, the characteristic function of a majority network can be also expressed as an ME



The satisfiablility of the above network can be evaluated through an ME:

- Introduction
- Solving Methods
 - Conflict Analysis
 - Conflict-driven Learning
 - Variable Decision Order Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Experimental Environment

Platform

- Intel Xeon[®] E5530 2.40GHz CentOS 4.6 platform with 64GB memory
- □ C++

Benchmarks

- CNF benchmarks from SATLIB for verifying the correctness
- Randomly-generated benchmarks of ME with different scales for testing the efficiency

Experimental Results (1/2)

CNF benchmarks with different numbers of variables and clauses

				Solving Result	
Benchmarks	variable	clause	Golden Result	CNF	ME
uf20-91	20	91	SAT	SAT	SAT
uf50-218	50	218	SAT	SAT	SAT
uf75-325	75	325	SAT	SAT	SAT
uf100-430	100	430	SAT	SAT	SAT
uf125-538	125	538	SAT	SAT	SAT
uf150-645	150	645	SAT	SAT	SAT
uuf50-218	50	218	UNSAT	UNSAT	UNSAT
uuf75-325	75	325	UNSAT	UNSAT	UNSAT
uuf100-430	100	430	UNSAT	UNSAT	UNSAT
uuf125-538	125	538	UNSAT	UNSAT	UNSAT
uuf150-645	150	645	UNSAT	UNSAT	UNSAT

Experimental Results (2/2)

- The experiments on randomly-generated ME benchmarks of different scales
 - (number of variables)_(number of majority functions)_(size of majority function)
- The solving time of MajorSat is less than the time of converting ME into CNF coupled with the solving time of CNF solvers

	-								
	MajorSat		MiniSat		Lingeling				
Benchmarks	$t_{sol}(s)$	$t_{conv}(s)$	$t_{sol}(s)$	total(s)	$t_{sol}(s)$	total(s)			
75_75_17	2.37	1.37	> 1000	> 1000	> 1000	> 1000			
75_75_19	9.51	5.53	> 1000	> 1000	> 1000	> 1000			
75_75_21	12.38	22.80	> 1000	> 1000	> 1000	> 1000			
75_75_23	20.16	97.58	> 1000	> 1000	> 1000	> 1000			
75_75_25	42.37	410.07	> 1000	> 1000	> 1000	> 1000			
75_75_27	118.14	> 1000	_	> 1000	—	> 1000			
75_75_29	158.01	> 1000	_	> 1000	—	> 1000			
100_100_11	0.15	0.04	3.55	3.59	10.70	10.74			
100_100_13	2.81	0.14	475.10	475.24	404.40	404.54			
100_100_15	12.94	0.43	> 1000	> 1000	> 1000	> 1000			
100_100_17	59.59	2.10	> 1000	> 1000	> 1000	> 1000			
100_100_19	140.05	8.10	> 1000	> 1000	> 1000	> 1000			
100_100_21	894.18	30.36	> 1000	> 1000	> 1000	> 1000			
125_125_11	2.88	0.04	895.80	895.84	237.60	237.64			
125_125_13	11.08	0.17	> 1000	> 1000	> 1000	> 1000			
125_125_15	152.87	0.59	> 1000	> 1000	> 1000	> 1000			

- Introduction
- Solving Methods
 - Conflict Analysis
 - Conflict-driven Learning
 - Variable Order Decision Heuristic
- Majority Gate Transformation
- Experimental Results
- Conclusions

Conclusions

- We propose a new SAT solver MajorSat for solving majority logic
- Several properties about majority functions are also investigated to increase the efficiency of MajorSat
- The experimental results show that MajorSat is more efficient in solving majority expressions than CNF solvers

Thanks for Attention

• Q&A

The Overall Flow of MajorSat

