
1

Fast Synthesis of Threshold Logic

Networks with Optimization

Yung-Chih Chen*, Runyi Wang, and Yan-Ping Chang

Yuan Ze University, Taiwan

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

2

Threshold logic

 Threshold logic is an alternative representation to

conventional Boolean logic

 Logical function f of a threshold logic gate is

defined as follows:

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 =
1, if 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

≥ 𝑇

0, otherwise

 Threshold logic network (TLN)

 A logic network composed of threshold gates

3

 T

w1

wn

wi

…
 …

…

…

x1

xi

xn

…

…

f

Threshold logic

 Development of threshold logic

 Started in 1960s, but had only a little impact on today’s

IC designs

 lack of effective hardware implementation

 Re-attracted attention in recent years

 advances in nanoscale device technology

 Resonant tunneling diodes, quantum cellular automata, and

single-electron transistor

 They are possible devices for threshold logic implementation

 Design automation techniques

 synthesis, optimization, verification, static timing analysis,

and automatic test pattern generation

4

Advantages of threshold logic (1/2)

 Compatible with nanoscale devices

 Compact

f = x1(x2+x3+(x4(x5+x6)))

 Could be a good intermediate representation in

today’s design flow

 Used to enhance logic optimization and design

verification

5

x1

x2
x3

x4

x6

x1
f

x5

8
3
3
2
1
1

11

x6

x2

x3

x4
x5

f

 Logic optimization Equivalence checking

Advantages of threshold logic (2/2)

6

Boolean logic

network

TLN

Opt. TLN

Opt. Boolean

logic network

Boolean logic

networks

TLNs

Fast network transformation

TLN optimization

(different opt.
opportunities)

TLN equivalence
checking

(lower complexity)

x
1

x
2

x
5

x
3

x
4

f1

f2

 2
1
1

 1
-1
1

 2

1
1
2

g2

g3

g1_5

 1
1

-2
1

TLN synthesis

 We aim to propose a FAST TLN synthesis

approach

 Problem formulation

 Input: a conventional Boolean logic

 Output: a TLN with minimized gate count

7

 2
1
1

x
1

x
2

x
3

x
4
 f1

f2 2
1
1

 2
1
1

 2
1
1

 2
1
1

 2
1
1

g1

g2

g3

g5

g6

Previous works on TLN synthesis

 Work based on a threshold function1 identification procedure

 Integer linear programming (ILP)-based

 Binary decision diagram or truth table-based

 For a Boolean function

 A threshold function → weights and threshold value

 Not a threshold function → function decomposition

 For a Boolean logic network to be synthesized

 They repeatedly identify and map all the sub-functions into threshold

logic gates

 Main disadvantage

 Inefficiency

8

1Threshold function: a Boolean function which can be implemented with only one

threshold logic gate

Our approach

 A fast synthesis approach without threshold

function identification

 Faster

 Better or competitive synthesis quality

9

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

10

Threshold function

 A threshold function

 A Boolean function which can be implemented with only

one threshold logic gate

 Conventional primitive functions, such as AND, OR,

and NOT, are threshold functions

11

n-input AND n-input OR Inverter

x
i

x
n

…

…

…

1

1

1 …

…

…

…

…

x
1

f
…

x

i

…

…

f

x
n

x
1

n

1

1

1 1 x f -1 0 …

 Thus, a Boolean logic network composed of only

primitive logic gates can be FAST transformed into

a TLN by one-to-one mapping

 Each logic gate is mapped to a threshold gate

 Actually, this is the first step of our approach

 2
1
1

x
1

x
2

x
3

x
4
 f1

f2 2
1
1

 2
1
1

 2
1
1

 2
1
1

 2
1
1

g1

g2

g3

g5

g6

One-to-one mapping

12

x
1

x
2
 x

4

x
3

x
5

f1

f2

g1

g2

g3

g4

g5

g6

●: Inverter

Positive weight transformation

 In a threshold gate, a weight could be a positive or

negative number

 For easy to manipulate a threshold gate, the

negative weights can be transformed into positive

weights

 We also perform this transformation to avoid negative

weights during synthesis process

13

 3

x
1

x
2

x
3

f

-2
1
2
1

x
4

 5

x
1

f

2
1
2
1

x
3

x
4

x
2

Controlling-1 and -0 inputs

 Controlling-1 input of a threshold gate g

 An input which can determine the output value of g to 1 regardless of

the other inputs

 Controlling-0 input of a threshold gate g

 An input which can determine the output value of g to 0 regardless of

the other inputs

14

 2

x
1

x
2

x
3

f

2
1
1

 3

x
1

x
2

x
3

f

2
1
1

x1=1 implies f=1

x1=0 implies f=0

𝑤𝑖 ≥ 𝑇

 𝑤𝑖
𝑛
𝑖=1 − 𝑤𝑖 < 𝑇

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

15

Flowchart of the proposed method

16

Boolean logic
network

TLN

Network
transformation by

one-to-one mapping

TLN optimization

Opt. TLN

x
1

x
2
 x

4

x
3

x
5

f1

f2

g1

g2

g3

g4

g5

g6

 2
1
1

x
1

x
2

x
3

x
4
 f1

f2 2
1
1

 2
1
1

 2
1
1

 2
1
1

 2
1
1

g1

g2

g3

g5

g6

x
1

x
2

x
5

x
3

x
4

f1

f2

 2
1
1

 2
1
1

 2

1
1
2

g2

g3

g1_5

g3_4_6

 3
1
2
1

x
1

x
2

x
5

x
3

x
4

f1

f2

 2
1
1

 1
-1
1

 2

1
1
2

g2

g3

g1_5

g3_4_6

 1
1

-2
1

one-to-one mapping

optimization with predefined

transformations

Inverter elimination with reverse

positive weight transformation

TLN optimization with predefined

transformations

 Eight transformations for threshold logic

 Sufficient conditions for eliminating a gate or merging two

adjacent gates (i.e., one gate and one of its fanin gates)

 Work only for threshold gates with only positive weights

 Simple example of merging two adjacent gates

17

 3

x
1

x
2

x
3

f

1
1
1

 2

x
1

x
2

x
3

f 1
1

 2

1

1

Transformations 1 & 2

 T1: Constant gate elimination

 T2: Adjacent AND or OR gate merging

18

 1

x
1

x
2

x
3

f 1
1

 1

1

1

 1

x
1

x
2

x
3

f

1
1
1

 4

x
1

x
2

x
3

0
1
1
1

 0

x
1

x
2

x
3

1

1

1

1

 𝑤𝑖
𝑛
𝑖=1 < 𝑇 𝑇 ≤ 0

Transformation 3

 T3: AND gate-based merging (adapted from [9])

 An AND gate can be merged with one of its fanin gates

19

[9] S. Muroga, “Threshold logic and its applications,” New York, NY: John Wiley, 1971.

…

wr
wf_1

2
1
1

3
1

1 …

…

…

…

x
1

xn-1

n

wf_1

…
 Tf

y1

…

ym

…

wr …

…

x
1

x
n-1

wr =

 =1 - Tf + 1

Tr = (n - 1)*wr + Tf

Tr

wf_m

y1

ym

g

gf

gr

1
1

2
x

1

x
2

x
3

x
4

2
2
1
1

5

x
1

x
2

x
3

x
4

g1

g2

g3

wf_m

Transformation 4

 T4: OR gate-based merging (adapted from [18])

 An OR gate can be merged with one of its fanin gates

20

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to

nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.

2
1
1

3
1

1 …

wf_m

…

…

wr
wf_1

…

x
1

xn-1

1

wf_1

…
 Tf

y1

…

ym

…

wr …

…

x
1

x
n-1

wr = Tr = Tf

Tr

wf_m

y1

ym

g

gf

gr

…

1
1

1
x

1

x
2

x
3

x
4

3
2
1
1

3

x
1

x
2

x
3

x
4

g1

g2

g3

Transformations 5 & 6

 T5: Sum-of-product form to product-of-sum form conversion

 T6: Product-of-sum form to sum-of-product form conversion

21

x
3
 2

1
1

x
1
 x

2+x
2
 x

3

 1
1
1

 1
1
1

 2
1
1 3

2
1
1

x
1

x
2

x
3

x
1

x
3

x
1

x
2
 x

2

 2
1
1 g

1

g
2

g
3

g
4

g
5

x
2(x1

+x
3) T3: AND gate-based merging

 1
1
1

(x
1+x

2
)(x

1+x
3
)

 2
1
1

 2
1
1

 1
1
1 2

2
1
1

x
1

x
2

x
3

x
1

x
3

x
1

x
3

x
2
 x

2

 1
1
1

x
2
+x

1
x

2
 T4: gate-based merging

Transformation 7

 T7: Controlling-1 input-based merging

 gf is a controlling-1 input of g and

 gf is an OR gate

22

…

2
1
1

2

wn-1

wf 1

…

…

wr

…

x
1

xn-1

1

…
 1

y1

…

ym

…

wr …

…

x
1

x
n-1

wr = Tr = Tg

Tr

wn-1

y1

ym

g

gf
gr

…

1
1

1

x
1

x
3

x
4

2
2
1
1

2

x
1

x
2

x
3

x
4

g1

g2

g3

Tg
w1

wf ≥ Tg

x
2

w1

Transformation 8

 T8: Controlling-0 input-based merging

 gf is a controlling-0 input of g and

 gf is an AND gate

23

…

wf

w1

2
1
1

3

wn-1

wf

…

1

…

…

…

x
1

xn-1

1

…
 m

y1

…

ym

wf …

…

x
1

x
n-1

Tr = Tg (m−1) * wf

Tr

wn-1

y1

ym

g

gf
gr

…

1
1

2

x
1

x
3

x
4

2
2
1
1

5

x
1

x
2

x
3

x
4

g1

g2

g3

Tg
w1

 1
 =1 < Tg

x
2

Overall flow of TLN optimization

 The are three iterations and each iteration targets certain

types of transformations

 First iteration

 T2

 Second iteration

 T5 and T6

 Third iteration

 T3, T4, T7, T8, and T1

 At each iteration, each gate is selected as a target gate one

at a time in the topological order, and we check and perform

the transformation under consideration to the target gate if

applicable

24

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

25

Experimental setup

 C language within the ABC [2] environment

 Linux platform with two 1.90GHz CPUs and 32GB

memory

 Benchmarks

 IWLS 2005 benchmark suite

 And-Inverter Graph format

 Comparison

 ILP-based method [18] + lp_solve

26

[2] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis

and Verification,” http://www.eecs.berkeley.edu/~alanmi/abc/

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to

nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.

Experimental

results

 For fair comparison

 Fanin count constraint

 6

 Save an average of

28% threshold gates

 Much more efficient

27

benchmark |N|
ILP-based method Our method

|N| T(s) |N| ratio T(s)

pci_conf. 84 91 2.2 62 0.68 0.0

stepper. 157 124 3.1 83 0.67 0.0

ss_pcm 172 173 4.4 135 0.78 0.0

usb_phy 357 287 7.2 221 0.77 0.0

sasc 563 461 12.5 333 0.72 0.0

simple_spi 775 597 16.1 436 0.73 0.0

pci_spoci. 878 559 15.6 399 0.71 0.0

i2c 941 659 18.1 482 0.73 0.0

systemcdes 2641 2018 57.7 1377 0.68 0.0

spi 3429 2421 75.6 1614 0.67 0.0

des_area 4410 2774 94.4 2011 0.72 0.0

tv80 7233 4996 191.1 3559 0.71 0.1

mem_ctrl 8815 6573 267.6 4721 0.72 0.1

systemcaes 10585 7677 334.4 5333 0.69 0.1

ac97_ctrl 10395 8326 330.0 6194 0.74 0.1

usb_funct 13320 9860 468.6 6842 0.69 0.1

pci_bridge32 17814 13595 769.9 10496 0.77 0.2

aes_core 20509 14163 761.2 10057 0.71 0.2

wb_conmax 41070 28518 2148.3 21956 0.77 0.3

ethernet 57205 47004 4978.9 35243 0.75 0.6

des_perf 71327 59886 7210.0 42719 0.71 0.8

vga_lcd 88854 74095 10918.6 55402 0.75 0.9

average 0.72

total 28685.6 3.4

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

28

Conclusion

 We proposed a simple and fast approach for TLN

synthesis and optimization

 Much more efficient and effective than an ILP-based

method

 Future work

 Apply this compact logic representation to enhance

conventional logic optimization and design verification

29

Thank you for attention

30

