Fast Synthesis of Threshold Logic
Networks with Optimization

Yung-Chih Chen*, Runyi Wang, and Yan-Ping Chang
Yuan Ze University, Talwan

Outline

Introduction

Background

Threshold logic synthesis and optimization
Experimental results

Conclusion

Threshold logic

= Threshold logic Is an alternative representation to
conventional Boolean logic

= Logical function f of a threshold logic gate is
defined as follows:)

(n .
: w. > -
sy mny = {11 2T % |
=1 c

\ 0, otherwise Xn

= Threshold logic network (TLN)
= A logic network composed of threshold gates

Threshold logic

= Development of threshold logic
= Started in 1960s, but had only a little impact on today’s
|IC designs
= lack of effective hardware implementation

= Re-attracted attention in recent years

= advances in nanoscale device technology

Resonant tunneling diodes, quantum cellular automata, and
single-electron transistor

They are possible devices for threshold logic implementation
= Design automation techniques

» Synthesis, optimization, verification, static timing analysis,
and automatic test pattern generation

Advantages of threshold logic (1/2)

= Compatible with nanoscale devices

= Compact xl_}
f X1

@r ;((2
X4 — Xi f
X
cmpel .
F= X% (X3 (X, (X5 1Xg)))
= Could be a good intermediate representation in

today’s design flow

= Used to enhance logic optimization and design
verification

Advantages of threshold logic (2/2)

Logic optimization Equivalence checking

Boolean logic Boolean logic
network networks

TLN optimization TLN equivalence
(different opt. checking
(lower complexity)

opportunities)

Opt. Boolean Fast network transformation
logic network

TLN synthesis

= We aim to propose a FAST TLN synthesis
approach

= Problem formulation
= Input: a conventional Boolean logic
= Output: a TLN with minimized gate count

Previous works on TLN synthesis

Work based on a threshold function® identification procedure
= Integer linear programming (ILP)-based
= Binary decision diagram or truth table-based

For a Boolean function
= A threshold function — weights and threshold value
= Not a threshold function — function decomposition

For a Boolean logic network to be synthesized

= They repeatedly identify and map all the sub-functions into threshold
logic gates

Main disadvantage
= Inefficiency

Threshold function: a Boolean function which can be implemented with only one
threshold logic gate

Our approach

= A fast synthesis approach without threshold
function identification

= Faster
= Better or competitive synthesis quality

Outline

Introduction

Background

Threshold logic synthesis and optimization
Experimental results

Conclusion

10

Threshold function

s A threshold function

= A Boolean function which can be implemented with only
one threshold logic gate

= Conventional primitive functions, such as AND, OR,
and NOT, are threshold functions

n-input AND n-input OR Inverter

11

One-to-one mapping

= Thus, a Boolean logic network composed of only
primitive logic gates can be FAST transformed into
a TLN by one-to-one mapping

= Each logic gate is mapped to a threshold gate

e Inverter

= Actually, this is the first step of our approach

12

Positive weight transformation

= |n a threshold gate, a weight could be a positive or
negative number

= For easy to manipulate a threshold gate, the
negative weights can be transformed into positive

weights

1 Xy
X2 ° X2 \‘ @©
f f
X3 X3

Xy Xy

= We also perform this transformation to avoid negative

weights during synthesis process
13

Controlling-1 and -0 inputs

= Controlling-1 input of a threshold gate g

= An input which can determine the output value of g to 1 regardless of
the other inputs X,

X f
w, =T
X

X,=1 implies f=1
= Controlling-0 input of a threshold gate g

= An input which can determine the output value of g to O regardless of
the other inputs X,

X f
: n
) e W, —w, <T

3

X,=0 implies =0
14

Outline

Introduction

Background

Threshold logic synthesis and optimization
Experimental results

Conclusion

15

Flowchart of the proposed method

Boolean logic o o
network X _|: ’ g fi
2 4 O3
o p%ogl
3 . E)_ 96 f2

Network i
transformation by one-to-one mapping X,
one-to-one mapping

optimization with predefined
' transformations

[TLN optimization]

Inverter elimination with reverse

positive weight transformation

16

TLN optimization with predefined
transformations

= Eight transformations for threshold logic

= Sufficient conditions for eliminating a gate or merging two
adjacent gates (i.e., one gate and one of its fanin gates)

= Work only for threshold gates with only positive weights

= Simple example of merging two adjacent gates

@ =-» (0r

17

Transformations 1 & 2

= T1: Constant gate elimination

Yieaw; <T T<0
= T2: Adjacent AND or OR gate merging

@O (0

18

Transformation 3

= 13: AND gate-based merging (adapted from [9])
= An AND gate can be merged with one of its fanin gates

Xl
We =22 Wr -Tet1 ;(2
T,=(n-1)*w, + T X, O3

[9] S. Muroga, “Threshold logic and its applications,” New York, NY: John Wiley, 1971.

19

Transformation 4

= T4: OR gate-based merging (adapted from [18])
= An OR gate can be merged with one of its fanin gates

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to
nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.

20

Transformations 5 & 6

s T5: Sum—of—product form to product-of-sum form conversion

X1
g 0
X1 X+X, X, X, (X, X)) T3: AND gate-based merging

= T6: Product-of-sum form to sum-of-product form conversion

e HO

(X 4+X,) (X +X,) X, X X, T4: gate-based merging

21

Transformation 7

= [7: Controlling-1 input-based merging
= g; IS a controlling-1 input of g and
= g:Is an OR gate

Z

22

Transformation 8

= [8: Controlling-0 input-based merging
= ;IS a controlling-0 input of g and
= g; 1S an AND gate

23

Overall flow of TLN optimization

= The are three iterations and each iteration targets certain
types of transformations

= First iteration
= T2
= Second iteration
«= THhand T6
= Third iteration
« 13, T4, T7,T8,and T1

= At each iteration, each gate is selected as a target gate one
at a time in the topological order, and we check and perform

the transformation under consideration to the target gate if
applicable

24

Outline

Introduction

Background

Threshold logic synthesis and optimization
Experimental results

Conclusion

25

Experimental setup

C language within the ABC [2] environment

Linux platform with two 1.90GHz CPUs and 32GB
memory
Benchmarks

= IWLS 2005 benchmark suite
= And-Inverter Graph format

Comparison
= ILP-based method [18] + |Ip_solve

[2] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis
and Verification,” http://www.eecs.berkeley.edu/~alanmi/abc/

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to
nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.

26

Experimental
results

= For fair comparison

= Fanin count constraint
= O

= Save an average of
28% threshold gates

= Much more efficient

ILP-based method Our method
benchmark IN|

IN| T(s) IN| ratio T(s)
pci_conf. 84 91 2.2 62 0.68 0.0
stepper. 157 124 3.1 83 0.67 0.0
SS_pcm 172 173 4.4 135 0.78 0.0
usb_phy 357 287 7.2 221 0.77 0.0
sasc 563 461 12.5 333 0.72 0.0
simple_spi 775 597 16.1 436 0.73 0.0
pci_spoci. 878 559 15.6 399 0.71 0.0
i2C 941 659 18.1 482 0.73 0.0
systemcdes 2641| 2018 57.7) 1377 0.68 0.0
spi 3429 2421 75.6| 1614 0.67 0.0
des area| 4410| 2774 94.4| 2011 0.72 0.0
tv80 7233| 4996 191.1] 3559 0.71 0.1
mem__ctrl 8815 6573 267.6(4721 0.72 0.1
systemcaes| 10585| 7677 334.4| 5333 0.69 0.1
ac97 ctrl| 10395| 8326 330.0| 6194 0.74 0.1
usb_funct| 13320(9860 468.6| 6842 0.69 0.1
pci_bridge32| 17814| 13595 769.9(10496 0.77 0.2
aes _core| 20509(14163 761.2| 10057 0.71 0.2
wb_conmax| 41070 28518 2148.3| 21956 0.77 0.3
ethernet| 57205 47004 4978.9| 35243 0.75 0.6
des perf| 71327 59886 7210.0(42719 0.71 0.8
vga lcd| 88854| 74095 10918.6| 55402 0.75 0.9

average 0.72
total 28685.6 3.4

27

Outline

Introduction

Background

Threshold logic synthesis and optimization
Experimental results

Conclusion

28

Conclusion

= We proposed a simple and fast approach for TLN
synthesis and optimization

= Much more efficient and effective than an ILP-based
method

s Future work

= Apply this compact logic representation to enhance
conventional logic optimization and design verification

29

Thank you for attention

30

