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Threshold logic

= Threshold logic Is an alternative representation to
conventional Boolean logic

= Logical function f of a threshold logic gate is
defined as follows: )
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= Threshold logic network (TLN)
= A logic network composed of threshold gates




Threshold logic

= Development of threshold logic
= Started in 1960s, but had only a little impact on today’s
|IC designs
= lack of effective hardware implementation

= Re-attracted attention in recent years

= advances in nanoscale device technology

Resonant tunneling diodes, quantum cellular automata, and
single-electron transistor

They are possible devices for threshold logic implementation
= Design automation techniques

» Synthesis, optimization, verification, static timing analysis,
and automatic test pattern generation



Advantages of threshold logic (1/2)

= Compatible with nanoscale devices

= Compact xl_}
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= Could be a good intermediate representation in

today’s design flow

= Used to enhance logic optimization and design
verification




Advantages of threshold logic (2/2)

Logic optimization Equivalence checking

Boolean logic Boolean logic
network networks

TLN optimization TLN equivalence
(different opt. checking
(lower complexity)

opportunities)

Opt. Boolean Fast network transformation
logic network




TLN synthesis

= We aim to propose a FAST TLN synthesis
approach

= Problem formulation
= Input: a conventional Boolean logic
= Output: a TLN with minimized gate count




Previous works on TLN synthesis

Work based on a threshold function® identification procedure
= Integer linear programming (ILP)-based
= Binary decision diagram or truth table-based

For a Boolean function
= A threshold function — weights and threshold value
= Not a threshold function — function decomposition

For a Boolean logic network to be synthesized

= They repeatedly identify and map all the sub-functions into threshold
logic gates

Main disadvantage
= Inefficiency

Threshold function: a Boolean function which can be implemented with only one
threshold logic gate



Our approach

= A fast synthesis approach without threshold
function identification

= Faster
= Better or competitive synthesis quality
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Threshold function

s A threshold function

= A Boolean function which can be implemented with only
one threshold logic gate

= Conventional primitive functions, such as AND, OR,
and NOT, are threshold functions

n-input AND n-input OR Inverter
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One-to-one mapping

= Thus, a Boolean logic network composed of only
primitive logic gates can be FAST transformed into
a TLN by one-to-one mapping

= Each logic gate is mapped to a threshold gate

e Inverter

= Actually, this is the first step of our approach
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Positive weight transformation

= |n a threshold gate, a weight could be a positive or
negative number

= For easy to manipulate a threshold gate, the
negative weights can be transformed into positive

weights
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= We also perform this transformation to avoid negative

weights during synthesis process
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Controlling-1 and -0 inputs

= Controlling-1 input of a threshold gate g

= An input which can determine the output value of g to 1 regardless of
the other inputs X,

X f
w, =T
X

X,=1 implies f=1
= Controlling-0 input of a threshold gate g

= An input which can determine the output value of g to O regardless of
the other inputs X,
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X,=0 implies =0
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Flowchart of the proposed method
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Inverter elimination with reverse

positive weight transformation
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TLN optimization with predefined
transformations

= Eight transformations for threshold logic

= Sufficient conditions for eliminating a gate or merging two
adjacent gates (i.e., one gate and one of its fanin gates)

= Work only for threshold gates with only positive weights

= Simple example of merging two adjacent gates
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Transformations 1 & 2

= T1: Constant gate elimination

Yieaw; <T T<0
= T2: Adjacent AND or OR gate merging

@O (0
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Transformation 3

= 13: AND gate-based merging (adapted from [9])
= An AND gate can be merged with one of its fanin gates
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[9] S. Muroga, “Threshold logic and its applications,” New York, NY: John Wiley, 1971.
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Transformation 4

= T4: OR gate-based merging (adapted from [18])
= An OR gate can be merged with one of its fanin gates

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to
nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.
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Transformations 5 & 6

s T5: Sum—of—product form to product-of-sum form conversion

X1
g 0
X1 X+X, X, X, (X, X)) T3: AND gate-based merging

= T6: Product-of-sum form to sum-of-product form conversion

e HO

(X 4+X,) (X +X,) X, X X, T4: gate-based merging
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Transformation 7

= [7: Controlling-1 input-based merging
= g; IS a controlling-1 input of g and
= g:Is an OR gate

Z
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Transformation 8

= [8: Controlling-0 input-based merging
= ;IS a controlling-0 input of g and
= g; 1S an AND gate
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Overall flow of TLN optimization

= The are three iterations and each iteration targets certain
types of transformations

= First iteration
= T2
= Second iteration
«= THhand T6
= Third iteration
« 13, T4, T7,T8,and T1

= At each iteration, each gate is selected as a target gate one
at a time in the topological order, and we check and perform

the transformation under consideration to the target gate if
applicable
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Experimental setup

C language within the ABC [2] environment

Linux platform with two 1.90GHz CPUs and 32GB
memory
Benchmarks

= IWLS 2005 benchmark suite
= And-Inverter Graph format

Comparison
= ILP-based method [18] + |Ip_solve

[2] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis
and Verification,” http://www.eecs.berkeley.edu/~alanmi/abc/

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to
nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.
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Experimental
results

= For fair comparison

= Fanin count constraint
= O

= Save an average of
28% threshold gates

= Much more efficient

ILP-based method Our method
benchmark IN|

IN| T(s) IN| ratio  T(s)
pci_conf. 84 91 2.2 62 0.68 0.0
stepper. 157 124 3.1 83 0.67 0.0
SS_pcm 172 173 4.4 135 0.78 0.0
usb_phy 357 287 7.2 221 0.77 0.0
sasc 563 461 12.5 333 0.72 0.0
simple_spi 775 597 16.1 436 0.73 0.0
pci_spoci. 878 559 15.6 399 0.71 0.0
i2C 941 659 18.1 482 0.73 0.0
systemcdes 2641| 2018 57.7) 1377 0.68 0.0
spi 3429 2421 75.6| 1614 0.67 0.0
des area| 4410| 2774 94.4| 2011 0.72 0.0
tv80 7233| 4996 191.1] 3559 0.71 0.1
mem__ctrl 8815 6573 267.6( 4721 0.72 0.1
systemcaes| 10585| 7677 334.4| 5333 0.69 0.1
ac97 ctrl| 10395| 8326 330.0| 6194 0.74 0.1
usb_funct| 13320( 9860 468.6| 6842 0.69 0.1
pci_bridge32| 17814| 13595 769.9( 10496 0.77 0.2
aes _core| 20509( 14163 761.2| 10057 0.71 0.2
wb_conmax| 41070 28518  2148.3| 21956 0.77 0.3
ethernet| 57205 47004  4978.9| 35243 0.75 0.6
des perf| 71327 59886  7210.0( 42719 0.71 0.8
vga lcd| 88854| 74095 10918.6| 55402 0.75 0.9

average 0.72
total 28685.6 3.4
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Conclusion

= We proposed a simple and fast approach for TLN
synthesis and optimization

= Much more efficient and effective than an ILP-based
method

s Future work

= Apply this compact logic representation to enhance
conventional logic optimization and design verification
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Thank you for attention
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