
1

Fast Synthesis of Threshold Logic

Networks with Optimization

Yung-Chih Chen*, Runyi Wang, and Yan-Ping Chang

Yuan Ze University, Taiwan

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

2

Threshold logic

 Threshold logic is an alternative representation to

conventional Boolean logic

 Logical function f of a threshold logic gate is

defined as follows:

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 =
1, if 𝑥𝑖𝑤𝑖

𝑛

𝑖=1

≥ 𝑇

0, otherwise

 Threshold logic network (TLN)

 A logic network composed of threshold gates

3

 T

w1

wn

wi

…
 …

…

…

x1

xi

xn

…

…

f

Threshold logic

 Development of threshold logic

 Started in 1960s, but had only a little impact on today’s

IC designs

 lack of effective hardware implementation

 Re-attracted attention in recent years

 advances in nanoscale device technology

 Resonant tunneling diodes, quantum cellular automata, and

single-electron transistor

 They are possible devices for threshold logic implementation

 Design automation techniques

 synthesis, optimization, verification, static timing analysis,

and automatic test pattern generation

4

Advantages of threshold logic (1/2)

 Compatible with nanoscale devices

 Compact

f = x1(x2+x3+(x4(x5+x6)))

 Could be a good intermediate representation in

today’s design flow

 Used to enhance logic optimization and design

verification

5

x1

x2
x3

x4

x6

x1
f

x5

8
3
3
2
1
1

11

x6

x2

x3

x4
x5

f

 Logic optimization Equivalence checking

Advantages of threshold logic (2/2)

6

Boolean logic

network

TLN

Opt. TLN

Opt. Boolean

logic network

Boolean logic

networks

TLNs

Fast network transformation

TLN optimization

(different opt.
opportunities)

TLN equivalence
checking

(lower complexity)

x
1

x
2

x
5

x
3

x
4

f1

f2

 2
1
1

 1
-1
1

 2

1
1
2

g2

g3

g1_5

 1
1

-2
1

TLN synthesis

 We aim to propose a FAST TLN synthesis

approach

 Problem formulation

 Input: a conventional Boolean logic

 Output: a TLN with minimized gate count

7

 2
1
1

x
1

x
2

x
3

x
4
 f1

f2 2
1
1

 2
1
1

 2
1
1

 2
1
1

 2
1
1

g1

g2

g3

g5

g6

Previous works on TLN synthesis

 Work based on a threshold function1 identification procedure

 Integer linear programming (ILP)-based

 Binary decision diagram or truth table-based

 For a Boolean function

 A threshold function → weights and threshold value

 Not a threshold function → function decomposition

 For a Boolean logic network to be synthesized

 They repeatedly identify and map all the sub-functions into threshold

logic gates

 Main disadvantage

 Inefficiency

8

1Threshold function: a Boolean function which can be implemented with only one

threshold logic gate

Our approach

 A fast synthesis approach without threshold

function identification

 Faster

 Better or competitive synthesis quality

9

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

10

Threshold function

 A threshold function

 A Boolean function which can be implemented with only

one threshold logic gate

 Conventional primitive functions, such as AND, OR,

and NOT, are threshold functions

11

n-input AND n-input OR Inverter

x
i

x
n

…

…

…

1

1

1 …

…

…

…

…

x
1

f
…

x

i

…

…

f

x
n

x
1

n

1

1

1 1 x f -1 0 …

 Thus, a Boolean logic network composed of only

primitive logic gates can be FAST transformed into

a TLN by one-to-one mapping

 Each logic gate is mapped to a threshold gate

 Actually, this is the first step of our approach

 2
1
1

x
1

x
2

x
3

x
4
 f1

f2 2
1
1

 2
1
1

 2
1
1

 2
1
1

 2
1
1

g1

g2

g3

g5

g6

One-to-one mapping

12

x
1

x
2
 x

4

x
3

x
5

f1

f2

g1

g2

g3

g4

g5

g6

●: Inverter

Positive weight transformation

 In a threshold gate, a weight could be a positive or

negative number

 For easy to manipulate a threshold gate, the

negative weights can be transformed into positive

weights

 We also perform this transformation to avoid negative

weights during synthesis process

13

 3

x
1

x
2

x
3

f

-2
1
2
1

x
4

 5

x
1

f

2
1
2
1

x
3

x
4

x
2

Controlling-1 and -0 inputs

 Controlling-1 input of a threshold gate g

 An input which can determine the output value of g to 1 regardless of

the other inputs

 Controlling-0 input of a threshold gate g

 An input which can determine the output value of g to 0 regardless of

the other inputs

14

 2

x
1

x
2

x
3

f

2
1
1

 3

x
1

x
2

x
3

f

2
1
1

x1=1 implies f=1

x1=0 implies f=0

𝑤𝑖 ≥ 𝑇

 𝑤𝑖
𝑛
𝑖=1 − 𝑤𝑖 < 𝑇

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

15

Flowchart of the proposed method

16

Boolean logic
network

TLN

Network
transformation by

one-to-one mapping

TLN optimization

Opt. TLN

x
1

x
2
 x

4

x
3

x
5

f1

f2

g1

g2

g3

g4

g5

g6

 2
1
1

x
1

x
2

x
3

x
4
 f1

f2 2
1
1

 2
1
1

 2
1
1

 2
1
1

 2
1
1

g1

g2

g3

g5

g6

x
1

x
2

x
5

x
3

x
4

f1

f2

 2
1
1

 2
1
1

 2

1
1
2

g2

g3

g1_5

g3_4_6

 3
1
2
1

x
1

x
2

x
5

x
3

x
4

f1

f2

 2
1
1

 1
-1
1

 2

1
1
2

g2

g3

g1_5

g3_4_6

 1
1

-2
1

one-to-one mapping

optimization with predefined

transformations

Inverter elimination with reverse

positive weight transformation

TLN optimization with predefined

transformations

 Eight transformations for threshold logic

 Sufficient conditions for eliminating a gate or merging two

adjacent gates (i.e., one gate and one of its fanin gates)

 Work only for threshold gates with only positive weights

 Simple example of merging two adjacent gates

17

 3

x
1

x
2

x
3

f

1
1
1

 2

x
1

x
2

x
3

f 1
1

 2

1

1

Transformations 1 & 2

 T1: Constant gate elimination

 T2: Adjacent AND or OR gate merging

18

 1

x
1

x
2

x
3

f 1
1

 1

1

1

 1

x
1

x
2

x
3

f

1
1
1

 4

x
1

x
2

x
3

0
1
1
1

 0

x
1

x
2

x
3

1

1

1

1

 𝑤𝑖
𝑛
𝑖=1 < 𝑇 𝑇 ≤ 0

Transformation 3

 T3: AND gate-based merging (adapted from [9])

 An AND gate can be merged with one of its fanin gates

19

[9] S. Muroga, “Threshold logic and its applications,” New York, NY: John Wiley, 1971.

…

wr
wf_1

2
1
1

3
1

1 …

…

…

…

x
1

xn-1

n

wf_1

…
 Tf

y1

…

ym

…

wr …

…

x
1

x
n-1

wr =

 =1 - Tf + 1

Tr = (n - 1)*wr + Tf

Tr

wf_m

y1

ym

g

gf

gr

1
1

2
x

1

x
2

x
3

x
4

2
2
1
1

5

x
1

x
2

x
3

x
4

g1

g2

g3

wf_m

Transformation 4

 T4: OR gate-based merging (adapted from [18])

 An OR gate can be merged with one of its fanin gates

20

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to

nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.

2
1
1

3
1

1 …

wf_m

…

…

wr
wf_1

…

x
1

xn-1

1

wf_1

…
 Tf

y1

…

ym

…

wr …

…

x
1

x
n-1

wr = Tr = Tf

Tr

wf_m

y1

ym

g

gf

gr

…

1
1

1
x

1

x
2

x
3

x
4

3
2
1
1

3

x
1

x
2

x
3

x
4

g1

g2

g3

Transformations 5 & 6

 T5: Sum-of-product form to product-of-sum form conversion

 T6: Product-of-sum form to sum-of-product form conversion

21

x
3
 2

1
1

x
1
 x

2+x
2
 x

3

 1
1
1

 1
1
1

 2
1
1 3

2
1
1

x
1

x
2

x
3

x
1

x
3

x
1

x
2
 x

2

 2
1
1 g

1

g
2

g
3

g
4

g
5

x
2(x1

+x
3) T3: AND gate-based merging

 1
1
1

(x
1+x

2
)(x

1+x
3
)

 2
1
1

 2
1
1

 1
1
1 2

2
1
1

x
1

x
2

x
3

x
1

x
3

x
1

x
3

x
2
 x

2

 1
1
1

x
2
+x

1
x

2
 T4: gate-based merging

Transformation 7

 T7: Controlling-1 input-based merging

 gf is a controlling-1 input of g and

 gf is an OR gate

22

…

2
1
1

2

wn-1

wf 1

…

…

wr

…

x
1

xn-1

1

…
 1

y1

…

ym

…

wr …

…

x
1

x
n-1

wr = Tr = Tg

Tr

wn-1

y1

ym

g

gf
gr

…

1
1

1

x
1

x
3

x
4

2
2
1
1

2

x
1

x
2

x
3

x
4

g1

g2

g3

Tg
w1

wf ≥ Tg

x
2

w1

Transformation 8

 T8: Controlling-0 input-based merging

 gf is a controlling-0 input of g and

 gf is an AND gate

23

…

wf

w1

2
1
1

3

wn-1

wf

…

1

…

…

…

x
1

xn-1

1

…
 m

y1

…

ym

wf …

…

x
1

x
n-1

Tr = Tg (m−1) * wf

Tr

wn-1

y1

ym

g

gf
gr

…

1
1

2

x
1

x
3

x
4

2
2
1
1

5

x
1

x
2

x
3

x
4

g1

g2

g3

Tg
w1

 1
 =1 < Tg

x
2

Overall flow of TLN optimization

 The are three iterations and each iteration targets certain

types of transformations

 First iteration

 T2

 Second iteration

 T5 and T6

 Third iteration

 T3, T4, T7, T8, and T1

 At each iteration, each gate is selected as a target gate one

at a time in the topological order, and we check and perform

the transformation under consideration to the target gate if

applicable

24

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

25

Experimental setup

 C language within the ABC [2] environment

 Linux platform with two 1.90GHz CPUs and 32GB

memory

 Benchmarks

 IWLS 2005 benchmark suite

 And-Inverter Graph format

 Comparison

 ILP-based method [18] + lp_solve

26

[2] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis

and Verification,” http://www.eecs.berkeley.edu/~alanmi/abc/

[18] R. Zhang et al., “Threshold network synthesis and optimization and its application to

nanotechnologies,” IEEE Trans. Computer-Aided Design, vol. 24, pp. 107-118, Jan. 2005.

Experimental

results

 For fair comparison

 Fanin count constraint

 6

 Save an average of

28% threshold gates

 Much more efficient

27

benchmark |N|
ILP-based method Our method

|N| T(s) |N| ratio T(s)

pci_conf. 84 91 2.2 62 0.68 0.0

stepper. 157 124 3.1 83 0.67 0.0

ss_pcm 172 173 4.4 135 0.78 0.0

usb_phy 357 287 7.2 221 0.77 0.0

sasc 563 461 12.5 333 0.72 0.0

simple_spi 775 597 16.1 436 0.73 0.0

pci_spoci. 878 559 15.6 399 0.71 0.0

i2c 941 659 18.1 482 0.73 0.0

systemcdes 2641 2018 57.7 1377 0.68 0.0

spi 3429 2421 75.6 1614 0.67 0.0

des_area 4410 2774 94.4 2011 0.72 0.0

tv80 7233 4996 191.1 3559 0.71 0.1

mem_ctrl 8815 6573 267.6 4721 0.72 0.1

systemcaes 10585 7677 334.4 5333 0.69 0.1

ac97_ctrl 10395 8326 330.0 6194 0.74 0.1

usb_funct 13320 9860 468.6 6842 0.69 0.1

pci_bridge32 17814 13595 769.9 10496 0.77 0.2

aes_core 20509 14163 761.2 10057 0.71 0.2

wb_conmax 41070 28518 2148.3 21956 0.77 0.3

ethernet 57205 47004 4978.9 35243 0.75 0.6

des_perf 71327 59886 7210.0 42719 0.71 0.8

vga_lcd 88854 74095 10918.6 55402 0.75 0.9

average 0.72

total 28685.6 3.4

Outline

 Introduction

 Background

 Threshold logic synthesis and optimization

 Experimental results

 Conclusion

28

Conclusion

 We proposed a simple and fast approach for TLN

synthesis and optimization

 Much more efficient and effective than an ILP-based

method

 Future work

 Apply this compact logic representation to enhance

conventional logic optimization and design verification

29

Thank you for attention

30

