
Slide 1

Re-thinking Polynomial Optimization: Efficient 

Programming of Reconfigurable Radio 

Frequency (RF) Systems by Convexification

Fa Wang, Shihui Yin, Minhee Jun, Xin Li, Tamal Mukherjee, 

Rohit Negi and Larry Pileggi 

Carnegie Mellon University, Pittsburgh, PA 15213 USA



Slide 2

 Rapidly introduced wireless standards and applications pose

grand challenges for wireless chip design

 High cost in designing multiple fixed narrow-band RF front-ends

 Nonlinearity problems for wide band RF front-end

 In this context, reconfigurable RF system has been proposed

 Introduce tunable control knobs in circuit blocks so that the

performances can be adaptively changed

Motivation

[Reconfig-RF1] D. Banerjee, et. al., “Self-learning MIMO-RF receiver systems: process resilient

real-time adaptation to channel conditions for low power operation”, IEEE ICCAD, 2014.
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 The optimal configuration of RF systems may change

dramatically under different environmental conditions

 Programming a reconfigurable RF system is an important task

in order to maximally exploit the benefit of its reconfigurability

Motivation

[Reconfig-RF2] S. Sen, “Channel-adaptive zero-margin & process-adaptive self-healing

communication circuits/systems,” IEEE ICCAD, 2014.
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Traditional Optimization Approach

 Simulated annealing

 Idea: Relies on numerical simulations (e.g. by SPICE) to evaluate

the performance metrics, and adopt stochastic optimization

algorithms to avoid local optima

 Pros: Can avoid trapping in undesirable local optimum

 Cons: Can be very time consuming

[SA1] G. Gielen, et. al., “Analog circuit design optimization based on symbolic simulation and

simulated annealing,” IEEE JSSC, 1990.

[SA2] M. Krasnicki, et. al., “MAELSTROM: Efficient simulation-based synthesis for custom analog

cells,” IEEE DAC, 1999.

Performance evaluation 

using circuit simulator
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Traditional Optimization Approach

 Geometric programming

 Builds performance model in a special form which results in a 

convex optimization problem

 Applies convex optimization to efficiently solve the optimization

 Pros: can capture global behavior using performance model; 

convex optimization is easy to solve

 Cons: relies on the accuracy of model template; the optimal 

solution may not accurately match the actual circuit behavior

[GP1] M. Hershenson, et. al., “GPCAD: a tool for CMOS op-amp synthesis,” IEEE ICCAD, 1998.

[GP2] W. Daems, et. al., “Simulated-based automatic generation of signomial and posynomial

performance models for analog integrated circuit sizing,” IEEE ICCAD, 2001.

 1 1Performance Parametersf

Special form

 Performance ParametersK Kf

…

x y

z

…

Convex optimization
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 The traditional design optimization techniques are still ill-

equipped to program a reconfigurable RF system, due to

 The high cost of performance evaluations

 Convex limitation of model template

 We propose a performance model driven optimization method

based on general purpose polynomial model template

Challenges

Optimization Methods

Simulation driven

(High cost)

Performance model driven

Convex 

optimization

Proposed

[PoP] J. Lasserre, “Global optimization with polynomials and the problem of moments,” SIAM J.

Optim., 2001.



Slide 7

Outline

 Motivation

 The Proposed Approach

 Numerical Results

 Conclusions
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The Proposed Flow

 Two Steps

 Polynomial performance modeling 

 Polynomial optimization based on convexification

Simulation samples 

are collected

Polynomial 

performance model
Polynomial optimization 

 

   

min

s.t. 1,2, ,m m

f

g G m M

S

 



x
x

x

x

 1 2

T

Nx x xx

Polynomial performance cost function

Polynomial performance constraints
Additional linear constraints on x

Control knob values
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Polynomial Performance Modeling

 The polynomial performance model is built based on a set of

Monte Carlo samples

 Sparse regression is adopted for the polynomial performance

modeling task

 L1-norm regularization is used to find the sparse solution 
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Polynomial Optimization

 This optimization problem can be non-convex, due to the

general model template assumption

 To solve the global optimal solution of this non-convex

problem, we adopt a convexification approach

 The proposed flow:

 In what follows, we consider a simplified problem w/o

constraints

Part 1: Convexifying polynomial cost function

Part 2: Convexifying polynomial constraints

Part 3: Sequential semidefinite programming

[PoP] J. Lasserre, “Global optimization with polynomials and the problem of moments,” SIAM J.

Optim., 2001.
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Convexifying Polynomial Cost Function

 Convert the polynomial cost function to a PDF view

Original cost function

 min f
x

x

f(x)

x* x

For example:

PDF view

f(x)

x* x

 
   min f d


 x

x x x

   i i

i

f    x x x

Equivalent to weighted sum of f(xi)

Optimize weight assignment
Integration 

value

Optimize over all PDF function μ(x)

Convexifying polynomial cost function
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Convexifying Polynomial Cost Function

 Convert the polynomial cost function to a PDF view

 min f
x

x

f(x)

x* x

For example:

PDF view

f(x)

x* x
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Equivalent to weighted sum of f(xi)
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Integration 

value

Optimize over all PDF function μ(x)

Convexifying polynomial cost function

Original cost function
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Convexifying Polynomial Cost Function

 Convert the polynomial cost function to a PDF view

 min f
x

x

f(x)

x* x

For example:

PDF view

f(x)

x* x

 
   min f d


 x

x x x

   i i

i

f    x x x

Equivalent to weighted sum of f(xi)

Optimize weight assignment

Integration 

value

Optimize over all PDF function μ(x)

Convexifying polynomial cost function

Optimal!

Original cost function
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Convexifying Polynomial Cost Function

 Convert the polynomial cost function to a PDF view

 Equivalency: solving the problem in a PDF view gives the optimal cost function of 

the original problem

Original cost function

 min f
x

x

f(x)

x* x

For example:

PDF view

f(x)

x* x

 
   min f d


 x

x x x

Integration 

value

Optimize over all PDF function μ(x)

Optimal!

   * *  x x x

Convexifying polynomial cost function
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Convexifying Polynomial Cost Function

 Actually, optimizing PDF is not simpler than the original problem

 The PDF view leads to a moment view

Convexifying polynomial cost function

Original polynomial 

cost function
PDF view

Moment

view

PDF view:

   f x x dx 

For example:  f(x) = x3+x2+2x

Moment view:

=  2x x dx 

f(x) = x3+x2+2x

+
 2 x x dx  

Moments

 3x x dx 
+



Slide 16

Convexifying Polynomial Cost Function

Convexifying polynomial cost function

PDF view:

 
   min f d


 x

x x x

For example:  f(x) = x3+x2+2x

Moment view:

=
f(x) = x3+x2+2x

1 2 3
3 2 1

, ,
min 2
y y y

y y y  

 2x x dx 

 2 x x dx   Moments

Linear cost function

in moments

3 variables: 

one for linear, one for quadratic, one for cubic

1 variable

Introduce more variables to remove nonlinearity in cost function

 min
x

f x

To summarize

 3x x dx 
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Convexifying Polynomial Cost Function

Convexifying polynomial cost function

 2x x dx 

Moment view:

Question: can the moments take arbitrary values?

Answer: No!

For example:  2

2 0y x x dx    Negative y2 is not possible

Criteria: a PDF μ(x) must exist to generate the moments: (i.e. legalization) 

A sequence of semidefinite positive constraints on moment matrix

Mathematical formulation

0 1

1 2

0
y y

y y

 
 

 
Such as:

A set of constraints on moments need to be set up similar to the above one 

Arbitrary moments 

Legal moments
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1 2 3

2 3 4

0
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y y y

y y y

 
 


 
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1 2 3
3 2 1

, ,
min 2
y y y

y y y  

 2 x x dx   Moments 3x x dx 
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Sequential SDP

Sequential semidefinite programming

 A sequence of SDP problems {Hd; d = 1, 2, …} are obtained
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 1

min ( )
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 
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T
y yy

Cost function is linear in terms of y

Semidefinite positive constraint



Slide 19

Sequential SDP

 Features of sequential SDP

 For the optimization problem with constraints, additional SDP 

constraints are needed

 The constraint can be formulated similarly as the unconstrained 

case

 Optimal solution of x

H1 H2

…

Hd

…

Feasible set Optimal cost function 

of Hd

d

…
f*

Optimal

moments
Optimal x
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Numerical Experiments

 A reconfigurable RF front-end designed for WLAN 802.11g is used

 In this problem, we consider to minimize power subject to SNR constraint

 To fit the SNR model, the RF front-end is simulated by MATLAB 

SIMULINK and 800 samples are collected

LO 1

LO 2
I

Q

RF Filter 

LNA 1

RF Filter

LNA 2

IF Filter

LNA 3

BB LPF 

BB LPF 

Tunable block

Model order 2 3 4

# of Coefficients 28 148 411

Maximum Error (dB) 3.03 1.91 1.81

Average Error (dB) 1.81 1.01 0.69
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Numerical Experiments

 Based on performance model, two approaches are compared

 Simulated annealing (SA)

 Moment method

 Moment method achieves superior performance than SA

 Simulated SNR is close to SNR value in performance model

SNR 

specification

Methods Optimization results

Fitted SNR (dB)
Simulated SNR 

(dB)
Power (mW)

13
SA 14.72 14.35 11.99

Proposed 14.71 14.35 11.97

15
SA 15.00 14.99 13.49

Proposed 15.00 15.04 12.58

17
SA 17.00 16.61 21.95

Proposed 17.00 17.30 19.24
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Numerical Experiments

 Statistical behavior is studied for SA

 100 independent runs with random initial guess are performed

 SA is not guaranteed to converge to global optimum

 It is not possible to know if SA reaches global optimum or not 

 Moment method is guaranteed to find global optimum
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Numerical Experiments

 Runtime comparison

 Exhaustive search is not practical due to high cost

 For SA and the proposed approach

 Modeling cost is dominated by model fitting cost

 Proposed approach is guaranteed to find the global optimum while SA can 

be trapped in sub-optimal solutions

SNR Spec (dB)
Model Fitting 

(Sec.)

Optimization (Sec.)

Exhaustive search

(estimated)
SA Proposed

13.00

3.852x105

1.718x1010 76 2.4

15.00 1.718x1010 76 67

17.00 1.718x1010 76 76



Slide 24

Conclusions

 For reconfigurable RF system programming problem, a 

performance model driven optimization approach based on 

polynomial programming is proposed

 The non-convex polynomial programming problem is converted 

to a sequence of convex SDP problems based on convexification

 The proposed approach is validated in a reconfigurable RF front-

end example designed for WLAN 802.11g. As demonstrated in the 

example, efficient and robust programming can be achieved by 

applying the proposed approach


