Re-thinking Polynomial Optimization: Efficient Programming of Reconfigurable Radio Frequency (RF) Systems by Convexification

Fa Wang, Shihui Yin, Minhee Jun, Xin Li, Tamal Mukherjee, Rohit Negi and Larry Pileggi

Carnegie Mellon University, Pittsburgh, PA 15213 USA

Motivation

Rapidly introduced wireless standards and applications pose grand challenges for wireless chip design

- High cost in designing multiple fixed narrow-band RF front-ends
- Nonlinearity problems for wide band RF front-end
- In this context, reconfigurable RF system has been proposed
 - Introduce tunable control knobs in circuit blocks so that the performances can be adaptively changed

[Reconfig-RF1] D. Banerjee, et. al., "Self-learning MIMO-RF receiver systems: process resilient real-time adaptation to channel conditions for low power operation", *IEEE ICCAD*, 2014. Slide 2

Motivation

The optimal configuration of RF systems may change dramatically under different environmental conditions

Programming a reconfigurable RF system is an important task in order to maximally exploit the benefit of its reconfigurability

[Reconfig-RF2] S. Sen, "Channel-adaptive zero-margin & process-adaptive self-healing communication circuits/systems," *IEEE ICCAD*, 2014. Slide 3

Traditional Optimization Approach

Simulated annealing

Idea: Relies on numerical simulations (e.g. by SPICE) to evaluate the performance metrics, and adopt stochastic optimization algorithms to avoid local optima

Pros: Can avoid trapping in undesirable local optimum
Cons: Can be very time consuming

[SA1] G. Gielen, et. al., "Analog circuit design optimization based on symbolic simulation and simulated annealing," *IEEE JSSC*, 1990.
[SA2] M. Krasnicki, et. al., "MAELSTROM: Efficient simulation-based synthesis for custom analog cells," *IEEE DAC*, 1999.
Slide 4

Traditional Optimization Approach

Geometric programming

- Builds performance model in a special form which results in a convex optimization problem
- Applies convex optimization to efficiently solve the optimization

- Pros: can capture global behavior using performance model; convex optimization is easy to solve
- Cons: relies on the accuracy of model template; the optimal solution may not accurately match the actual circuit behavior

[GP1] M. Hershenson, et. al., "GPCAD: a tool for CMOS op-amp synthesis," *IEEE ICCAD*, 1998. [GP2] W. Daems, et. al., "Simulated-based automatic generation of signomial and posynomial performance models for analog integrated circuit sizing," *IEEE ICCAD*, 2001. Slide 5

Challenges

The traditional design optimization techniques are still illequipped to program a reconfigurable RF system, due to

- The high cost of performance evaluations
- Convex limitation of model template

Optimization Methods

We propose a performance model driven optimization method based on general purpose polynomial model template

[PoP] J. Lasserre, "Global optimization with polynomials and the problem of moments," *SIAM J. Optim.*, 2001. Slide 6

Outline

- The Proposed Approach
- Numerical Results

Conclusions

The Proposed Flow

Two Steps

- Polynomial performance modeling
- Polynomial optimization based on convexification

Polynomial Performance Modeling

- The polynomial performance model is built based on a set of Monte Carlo samples
- Sparse regression is adopted for the polynomial performance modeling task

L₁-norm regularization is used to find the sparse solution α

minimize
$$\|\mathbf{X} \cdot \boldsymbol{\alpha} - \mathbf{F}\|_2^2 \longrightarrow$$
Mean squared errorsubject to $\|\boldsymbol{\alpha}\|_1 \le \lambda$ $\boldsymbol{\lambda}$ $\boldsymbol{\lambda}_1$ -norm constraint to promote sparsity

Polynomial Optimization

- This optimization problem can be non-convex, due to the general model template assumption
- To solve the global optimal solution of this non-convex problem, we adopt a convexification approach

The proposed flow:

Part 1: Convexifying polynomial cost function

Part 2: Convexifying polynomial constraints

Part 3: Sequential semidefinite programming

In what follows, we consider a simplified problem w/o constraints

[PoP] J. Lasserre, "Global optimization with polynomials and the problem of moments," *SIAM J. Optim.*, 2001. Slide 10

Convexifying polynomial cost function

Convert the polynomial cost function to a PDF view

Convexifying polynomial cost function

Convert the polynomial cost function to a PDF view

Convexifying polynomial cost function

Convert the polynomial cost function to a PDF view

Convexifying polynomial cost function

Convert the polynomial cost function to a PDF view

Equivalency: solving the problem in a PDF view gives the optimal cost function of the original problem

Convexifying polynomial cost function

- Actually, optimizing PDF is not simpler than the original problem
- The PDF view leads to a moment view

Convexifying polynomial cost function

For example: $f(x) = x^3 + x^2 + 2x$ PDF view: Moment view: $f(x) = x^3 + x^2 + 2x$ Linear cost function $\min_{\mu(\mathbf{x})} \int f(\mathbf{x}) \cdot \mu(\mathbf{x}) \cdot d\mathbf{x} = \min_{y_1, y_2, y_3} y_3 + y_2 + 2 \cdot y_1$ in moments $2 \int x \cdot \mu(x) \cdot dx$ $\int x^3 \cdot \mu(x) \cdot dx$ **Moments** To summarize $\int x^2 \cdot \mu(x) \cdot dx$ min f(x) 1 variable 3 variables: one for linear, one for quadratic, one for cubic

Introduce more variables to remove nonlinearity in cost function

Convexifying polynomial cost function

Question: can the moments take arbitrary values?

Answer: No!

For example:

$$y_2 = \int x^2 \cdot \mu(x) \cdot dx \ge 0$$

Negative y_2 is not possible

A set of constraints on moments need to be set up similar to the above one

Criteria: a PDF $\mu(x)$ must exist to generate the moments: (i.e. legalization)

Sequential SDP

Sequential semidefinite programming

A sequence of SDP problems {H^d; d = 1, 2, ...} are obtained

Sequential SDP

Features of sequential SDP

For the optimization problem with constraints, additional SDP constraints are needed

The constraint can be formulated similarly as the unconstrained case

d

Numerical Experiments

A reconfigurable RF front-end designed for WLAN 802.11g is used

In this problem, we consider to minimize power subject to SNR constraint

To fit the SNR model, the RF front-end is simulated by MATLAB SIMULINK and 800 samples are collected

Numerical Experiments

Based on performance model, two approaches are compared

- Simulated annealing (SA)
- Moment method

SNR specification	Methods	Optimization results		
		Fitted SNR (dB)	Simulated SNR (dB)	Power (mW)
13	SA	14.72	14.35	11.99
	Proposed	14.71	14.35	11.97
15	SA	15.00	14.99	13.49
	Proposed	15.00	15.04	12.58
17	SA	17.00	16.61	21.95
	Proposed	17.00	17.30	19.24

Moment method achieves superior performance than SA

Simulated SNR is close to SNR value in performance model

Numerical Experiments

Statistical behavior is studied for SA

100 independent runs with random initial guess are performed

SA is not guaranteed to converge to global optimum

It is not possible to know if SA reaches global optimum or not

Moment method is guaranteed to find global optimum

Runtime comparison

	Model Fitting (Sec.)	Optimization (Sec.)		
SNR Spec (dB)		Exhaustive search (estimated)	SA	Proposed
13.00	3.852x10⁵	1.718x10 ¹⁰	76	2.4
15.00		1.718x10 ¹⁰	76	67
17.00		1.718x10 ¹⁰	76	76

Exhaustive search is not practical due to high cost

For SA and the proposed approach

- Modeling cost is dominated by model fitting cost
- Proposed approach is guaranteed to find the global optimum while SA can be trapped in sub-optimal solutions

Conclusions

- For reconfigurable RF system programming problem, a performance model driven optimization approach based on polynomial programming is proposed
- The non-convex polynomial programming problem is converted to a sequence of convex SDP problems based on convexification
- The proposed approach is validated in a reconfigurable RF frontend example designed for WLAN 802.11g. As demonstrated in the example, efficient and robust programming can be achieved by applying the proposed approach