

An Efficient Trajectory-based Algorithm for Model Order Reduction of Nonlinear Systems via Localized Projection and Global Interpolation

Chenjie Yang¹, Fan Yang¹, Xuan Zeng¹, and Dian Zhou^{1,2} ¹State Key Lab of ASIC & System, School of Microelectronics, Fudan University, Shanghai, P. R. China ²Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX, U.S.A.

ASPDAC 2016 @Macao

Outline

Background

- Proposed Approach
- Numerical Results
- Conclusion

Nonlinear Systems

A nonlinear system can be described by

$$\frac{dg(x)}{dt} + f(x) = Bu(t)$$

$$\begin{aligned} x \ \hat{\mathbf{I}} \ R^{N} \\ g(\cdot) : R^{N} \to R^{N} & \text{Nonlinear capacitance elements} \\ f(\cdot) : R^{N} \to R^{N} & \text{Nonlinear resistance elements} \\ B \ \hat{\mathbf{I}} \ R^{N' p} & \text{Input incidence matrix} \end{aligned}$$

Trajectory Piecewise Linearization

Linearize the nonlinear system around a series of points {x₁,x₂,...,x_s}:

$$\overset{s}{\overset{a}{a}} w_i(x) \left(C_i \frac{dx}{dt} + G_i x + f(x_i) - G_i x_i \right) = Bu(t)$$

 Generate projection basis {V₁,V₂,...,V_s} for each piece of PWL system by Arnoldi/TBR method

$$C_i \frac{dx}{dt} + G_i x + f(x_i) - G_i x_i = Bu(t)$$

Projection basis for nonlinear system:

$$V = \left\{ V_1, V_2, \cdots, V_s \right\}$$

4

Trajectory-based Algorithm via Localized Linear Projection

- Traditional trajectory-based algorithm depends on a global reduction matrix by combining subspaces at all points
- The dimension would be extremely large
- Localized linear projection: use localized projection matrices rather than global projection matrices

Reduction: build small overlapped ROMs with localized projection matrices Simulation: jump from one local coordinate to another one

Limitations of Localized Linear Projection

- The localized ROMs should be overlapped to guarantee accuracy. The coordinates of neighboring localized ROMs are different, they cannot be interpolated globally.
- A global projection matrix is needed to provide a global view. The transformation between local and global subspaces would consume considerable amount of time.

Outline

- Background
- Proposed Approach
- Numerical Results
- Conclusion

Key Idea of the Proposed Approach

- Transform the coordinates of localized ROMs into consistent global coordinate
- Benefits:
 - Enable global interpolation: overlapped ROMs are no longer necessary
 - Smooth transformation between localized ROMs: no coordinate transformation is needed

ROMs of Locally Linearized Systems

Consider the localized linearized systems along the expansion points {x₁,x₂,...,x_s} on the trajectories:

$$C_i \frac{dx}{dt} + G_i x + I_i = Bu(t)$$
 i=1,...s

With a set of projection matrices {V₁, V₂,...,V_s} of sizes N × p, the ROMs can be expressed as

$$\tilde{C}_i \frac{d\tilde{x}}{dt} + \tilde{G}_i \tilde{x} + \tilde{I}_i = \tilde{B}_i u(t)$$
 i=1,...s

where $\tilde{C}_i = V_i^T C_i V_i$, $\tilde{G}_i = V_i^T G_i V_i$, $\tilde{I}_i = V_i^T I_i$, $\tilde{B}_i = V_i^T B_i$.

Transforms the ROMs to Ones with Consistent Coordinate

- A subspace can be described using different projection bases.
- For V_i, a new equivalent projection basis V[']_i can be obtained by using an orthogonal matrix Q_i

$$V_i' = V_i Q_i, i = 1, 2, \cdots, s$$

- V_i and V_i span the same subspace. The ROMs obtained by V_i and V_i are equivalent but with different coordinates.
- Key idea: transform the ROMs into equivalent ROMs with consistent coordinates

Transforms the ROMs to Ones with Consistent Coordinate

Consider two projection bases V_i and V_j, we aims to find a transformation matrix Q_{ij} such that the coordinates of the ROMs obtained by V_i and V_i are consistent

$$\min_{Q_{i,j} \in R^{p'p}} \left\| V_j Q_{i,j} - V_i \right\|_F$$

which is equivalent to minimize the difference of the projection matrices V_i and V_j .

The analytical solution of this minimization problem is

$$Q_{i,j} = U_{i,j} Z_{i,j}^T$$

where $U_{i,j}SZ_{i,j}^{T}$ is SVD of $V_i^{T}V_j$.

Algorithm for transforming localized ROMs to Ones with consistent coordinate

• For a set of localized ROMs, randomly choose a reference, and transform the other ROMs according to the reference.

Algorithm 1 Algorithm for transforming localized ROMs to ROMs with consistent coordinate

- 1: Let V_{localj} be the local reduction matrix of ROM $j, j = \{1, 2..., m\}$
- 2: Randomly choose $r \in j$ as reference
- 3: for all j except r do

4:
$$P = V_{localj}^T V_{localr}$$

5: $[U, S, Z] = \text{svd}(P)$
6: $Q = UZ^T$
7: $V'_{localj} = V_{localj}Q$
8: $\tilde{G}'_j = V'^T_{localj}G_jV'_{localj}$
9: $\tilde{C}'_j = V'^T_{localj}C_jV'_{localj}$
10: $\tilde{I}'_j = V'^T_{localj}I_j$

10.
$$I_j = V_{localj}^{T} I_j$$

11. $B'_j = V_{localj}^{T} B$
12. $\tilde{L'_j} = V_{localj}^{T} L_j$
13. $\tilde{x'_j} = V_{localj}^{T} x_j$

14: **end for**

Transforms the ROMs to Ones with Consistent Coordinate

- It would be difficult to make all the ROMs of the linearized systems share the same consistent coordinates.
- We propose a hybrid strategy
 - Group the state points employing some data mining methods.
 - For each group, derive a global projection matrix by aggregating the localized projection matrices
 - Use Algorithm 1 to make global projection matrices from different groups share the consistent coordinate

Global Interpolation of Localized ROMs with Consistent Coordinate

- During simulation, because the coordinates of the localized ROMs are consistent
 - For a new state point z, we find k nearest localized ROMS around z
 - Use these localized ROMs to interpolate the final ROMs

Outline

- Background
- Proposed Approach
- Numerical Results
- Conclusion

Case 1: Telescopic Operational Amplifier

- Order of the original system: 83
- 72 state points are extracted. A test input v = 1.5+0.01sin(8π*t) is applied to the model.
- The simulation results of the traditional local projection [7] and our proposed method match the SPICE simulation results well.

Case 2: Current Mirror OTA

- Order of the original system: 70
- 66 state points are extracted. A test input v = 0.9+2*10⁻⁶(1-e⁻ t^{/0.6}) is applied to the model.
- The simulation results of the traditional local projection [7] and our proposed method match the SPICE simulation results well.

Case 3: Clock Driver Circuit

- Order of the original system: 5642
- 439 state points are extracted. Another pulse input with different frequency is applied to the model.
- The simulation results of the traditional local projection [7] and our proposed method match the SPICE simulation results well.

Comparison of the Time/Memory Consumption

Test	Our proposed method		Method in [7]		SPICE
	# ROMs	sim.	# ROMs	sim.	sim.
		time(s)		time(s)	time(s)
OPA	15	0.0124	68	0.0169	0.068
ОТА	13	0.0218	60	0.0266	2.25
CDR	55	0.318	412	0. 445	290.86

- The proposed method can significantly reduce the number of localized ROMs and hence the memory consumption
- For the CDR case, the memory requirement for [7] is 1815MB, while our proposed method needs only 219MB
- The simulation time is also slightly reduced

Conclusion

- We transform the coordinates of localized ROMs into consistent global coordinate
- Global interpolation is possible and the overlapped ROMs is no longer necessary, which significantly reduce the number of localized ROMs
- Smooth transformation between localized ROMs. No coordinate transformation is needed
- The proposed method can achieve the same accuracy, while significantly reduce the number of localized ROMs and slightly reduce the simulation time

Thanks for your attention!

