STORM: A Nonlinear Model Order Reduction Method via Symmetric Tensor Decomposition

Jian Deng, Haotian Liu, Kim Batselier, Yu-Kwong Kwok, Ngai Wong

Outline

- Nonlinear model order reduction (NMOR)
- Tensor: what's it?
- Symmetric tensor decomposition
- Symmetric Tensor-based Order Reduction Method (STORM)
- Numerical Examples
- Conclusion

One Origin of Nonlinearity: Products

- Captured by the Kronecker product notation
- Illustration, a 2 x 1 state vector $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$

$$
x \otimes x=\left[\begin{array}{l}
x_{1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
x_{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{array}\right]=\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right]
$$

Nonlinear Ordinary Differential Eqn (ODE)/Differential Algebraic Eqn (DAE)

- We use a simpler nonlinear ordinary differential equation (ODE), instead of differential algebraic equation (DAE), for ease of illustration. Same idea.
- Nonlinear ODE state space with Kronecker product and a single scalar input u

$$
F_{2}(x \otimes x)+G_{3}(x \otimes x \otimes x)+b u
$$

$$
x \in \mathbb{R}^{n \times 1}, G_{1} \in \mathbb{R}^{n \times n}, G_{2} \in \mathbb{R}^{n \times n^{2}}, G_{3} \in \mathbb{R}^{n \times n^{3}}, b \in \mathbb{R}^{n \times 1}, u \in \mathbb{R}
$$

Volterra Series (Time Domain)

$$
F_{2}(x \otimes x)+G_{3}(x \otimes x \otimes x)+b u
$$

Volterra series approximate $x(t)$ globally with different orders of convolutions, called Kernels

$$
\begin{aligned}
& x(t)=x_{1}(t)+x_{2}(t)+x_{3}(t)+ \\
x_{1}(t)= & \int_{-\infty}^{\infty} h_{1}(\tau) u(t-\tau) d \tau \\
x_{2}(t) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{2}\left(\tau_{1}, \tau_{2}\right) u\left(t-\tau_{1}\right) u\left(t-\tau_{2}\right) d \tau_{1} d \tau_{2} \\
x_{3}(t)= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h_{3}\left(\tau_{1}, \tau_{2}, \tau_{3}\right) u\left(t-\tau_{1}\right) u\left(t-\tau_{2}\right) u\left(t-\tau_{3}\right) d \tau_{1} d \tau_{2} d \tau_{3}
\end{aligned}
$$

Similar in concept to Taylor series for local behavior...

Time- \& Frequency-Domain "Looks"

$\vec{J}_{2}(x \otimes x)+G_{3}(x \otimes x \otimes x)+b u$

- Time domain bu
$G_{2}\left(x_{1} \otimes x_{1}\right)$

$$
\begin{aligned}
& G_{2}\left(x_{1} \otimes x_{2}+x_{2} \otimes x_{1}\right)+G_{3}\left(x_{1}^{\otimes 3}\right) \\
& G_{2}\left(x_{1} \otimes x_{3}+x_{3} \otimes x_{1}+x_{2}^{\otimes 2}\right)+G_{3}\left(x_{1}^{\otimes 2} \otimes x_{2}+x_{2} \otimes x_{1}^{\otimes 2}+x_{1} \otimes x_{2} \otimes x_{1}\right)
\end{aligned}
$$

- Frequency domain
$H_{1}(s)=\left(s I-G_{1}\right)^{-1} b$
$H_{2}\left(s_{1}, s_{2}\right)=\frac{1}{2}\left(\left(s_{1}+s_{2}\right) I-G_{1}\right)^{-1}\left\{G_{2}\left[H_{1}\left(s_{1}\right) \otimes H_{1}\left(s_{2}\right)+H_{1}\left(s_{2}\right) \otimes H_{1}\left(s_{1}\right)\right]\right\}$
$H_{3}\left(s_{1}, s_{2}, s_{3}\right)=\frac{1}{6}\left(\left(s_{1}+s_{2}+s_{3}\right) I-G_{1}\right)^{-1}\left\{G_{2}\left[2 H_{1}\left(s_{1}\right) \otimes H_{2}\left(s_{2}, s_{3}\right)+\right.\right.$
$H_{4}\left(s_{1}, s_{2}, s_{3}, s_{4}\right)=$

Nonlinear Model Order Reduction (NMOR)

NMOR in Action (Cont'd)

- Kronecker product property: $(A B) \otimes(C D)=(A \otimes C)(B \otimes D)$

$$
x \otimes x \approx(V \hat{x}) \otimes(V \hat{x})=(V \otimes V)(\hat{x} \otimes \hat{x})
$$

$工$
$V \dot{\hat{x}}=G_{1} V \hat{x}+G_{2}(V \otimes V)(\hat{x} \otimes \hat{x})+G_{3}(V \otimes V \otimes V)(\hat{x} \otimes \hat{x} \otimes \hat{x})+b u$
$\Rightarrow \dot{\hat{x}}=\left(V^{T} G_{1} V\right) \hat{x}+\left(V^{T} G_{2}(V \otimes V)\right)(\hat{x} \otimes \hat{x})$

$$
+\left(V^{T} G_{2}(V \otimes V \otimes V)\right)(\hat{x} \otimes \hat{x} \otimes \hat{x})+\left(V^{T} b\right) u
$$

$\Leftrightarrow \dot{\hat{x}}=G_{1}^{\prime} \hat{x}+G_{2}^{\prime}(\hat{x} \otimes \hat{x})+G_{3}^{\prime}(\hat{x} \otimes \hat{x} \otimes \hat{x})+b^{\prime} u$

NMOR by Moment Matching (@ s;'s)

NORM Algorithm [Li \& Pileggi, DACO3, TCAD05]

$$
\begin{aligned}
& H_{1}(s)=\left(s I-G_{1}\right)^{-1} b=-\left(I-s G_{1}^{-1}\right)^{-1} G_{1}^{-1} b=-G_{1}^{-1} b-G_{1}^{-2} b s-G_{1}^{-3} b s^{2} \\
& H_{2}\left(s_{1}, s_{2}\right)=\frac{1}{2}\left(\left(s_{1}+s_{2}\right) I-G_{1}\right)^{-1}\left\{G_{2}\left[H_{1}\left(s_{1}\right) \otimes H_{1}\left(s_{2}\right)+H_{1}\left(s_{2}\right) \otimes H_{1}\left(s_{1}\right)\right]\right\} \\
& H_{3}\left(s_{1}, s_{2}, s_{3}\right)=\frac{1}{6}\left(\left(s_{1}+s_{2}+s_{3}\right) I-G_{1}\right)^{-1}\left\{G _ { 2 } \left[2 H_{1}\left(s_{1}\right) \otimes H_{2}\left(s_{2}, s_{3}\right)+\right.\right.
\end{aligned}
$$

1. Use Taylor expansion to expand each transfer function (TF)
2. Match moments with Krylov subspaces

TF	Moments to be matched for 2 ${ }^{\text {nd }}$ order accuracy
$H_{1}(s)$	$1, s, s^{2}$
$H_{2}\left(s_{1}, s_{2}\right)$	$1, s_{1}, s_{2}, s_{1}{ }^{2}, s_{2}{ }^{2}, s_{1} s_{2}$
$H_{3}\left(s_{1}, s_{2}, s_{3}\right)$	$1, s_{1}, s_{2}, s_{3}, s_{1}{ }^{2}, s_{2}{ }^{2}, s_{3}{ }^{2}, s_{1} s_{2}, s_{1} s_{3}, s_{2} s_{3}$

More columns, SVD etc.

Pros and Cons

Pros

- Automatic macromodel extraction

Fast and accurate simulation and verification
Cons
Dense reduced system matrices

- Large memory requirement
- Large computational cost

Curse of Dimensionality

- Any way out?
- We need the right tool(s)!

Tensors in a Nutshell

- Tensor is just a REPRESENTATION for a d-way "matrix"

$$
\mathcal{A}_{i_{1} i_{2}} \in R^{n_{1} \times n_{2} \times}
$$

- It includes

Usage of Tensors

- Numerous!
- Big data
- Signal processing
- Chemometrics
- Model reduction
- Nonlinear system modeling
-
- A matter of data representation

Various Decompositions

Canonical, Tucker, Tensor Train

Central Idea of Tensor NMOR

TNMOR: H. Liu, L. Daniel and N. Wong "Model reduction and simulation of nonlinear circuits via tensor decomposition"

$O(2 n r+n r)$

Trick: Exploiting Symmetry

- TNMOR is limited by availability of low-rank decomposition, and NO exploitation of structure such as tensor symmetry.
- Let's try to zoom in a toy case with $\mathrm{n}=2$ in G_{2}

$$
\begin{aligned}
& G_{2}(x \otimes x)=\left[\begin{array}{cccc}
10 & 9 & 19 & 20 \\
1 & 1 & 3 & 5
\end{array}\right]\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \otimes\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{cccc}
10 & 9 & 19 & 20 \\
1 & 1 & 3 & 5
\end{array}\right]\left[\begin{array}{c}
x_{1}^{2} \\
x_{1} x_{2} \\
x_{1} x_{2} \\
x_{2}^{2}
\end{array}\right], ~ \text { Get 1st } \\
& \text { row }
\end{aligned}
$$

Toy G_{2} (Cont'd)

- Equivalent to a symmetric matrix and quadratic form
$G_{2}(1),(x \otimes x)=\left[\begin{array}{llll}10 & 9 & 19 & 20\end{array}\right]\left[\begin{array}{c}x_{1}^{2} \\ x_{1} x_{2} \\ x_{1} x_{2} \\ x_{2}^{2}\end{array}\right]$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
10 & 19 \\
9 & 20
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
10 & 14 \\
14 & 20
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
1 & 2
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right]\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right.
\end{aligned}
$$

$$
=\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)^{2}+\left(\left[\begin{array}{ll}
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)^{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left(\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)
$$

- \circ ' stands for Hadamard
(element-wise) product

Toy G_{3} (Cont'd)

- Now let's do $\mathrm{G}_{3}(1$, : $)$
$G_{3}(1,:)(x \otimes x \otimes x)=\left[\begin{array}{llllllll}36 & 30 & 20 & 90 & 100 & 110 & 10 & 99\end{array}\right]$

$$
\left[\begin{array}{c}
x_{1}^{3} \\
x_{1}^{2} x_{2} \\
x_{1}^{2} x_{2} \\
x_{1} x_{2}^{2} \\
x_{1}^{2} x_{2} \\
x_{1} x_{2}^{2} \\
x_{1} x_{2}^{2} \\
x_{2}^{3}
\end{array}\right]
$$

$$
=\left[\begin{array}{llllllll}
36 & 50 & 50 & 70 & 50 & 70 & 70 & 99
\end{array}\right]\left[\begin{array}{l}
x_{1} x_{2}^{2} \\
x_{1}^{2} x_{2} \\
x_{1} x_{2}^{2} \\
x_{1} x_{2}^{2} \\
x_{2}^{3}
\end{array}\right]
$$

Toy G_{3} (Cont'd)

- Now let's do $\mathrm{G}_{3}(1,:)$

Symmetric Tensors

Subset of general arbitrary tensors

STEROID (Symmetric Tensor Eigen-Rank-One Iterative Decomposition) decomposes a symmetric tensor into symmetric outer products, see K. Batselier and N. Wong, "Symmetric tensor decomposition by an iterative eigendecomposition algorithm"

Key: Symmetric Tensor Decomp

- Symmetric tensor can always be decomposed into a finite sum of symmetric outer products
- Symmetric Tensor-based Order Reduction Method
- Same trick applies to computing Krylov subspaces
- Recalling

$$
\begin{aligned}
& H_{1}(s)=\left(s I-G_{1}\right)^{-1} b=-\left(I-s G_{1}^{-1}\right)^{-1} G_{1}^{-1} b=-G_{1}^{-1} b-G_{1}^{-2} b s-G_{1}^{-3} b s^{2} \\
& H_{2}\left(s_{1}, s_{2}\right)=\frac{1}{2}\left(\left(s_{1}+s_{2}\right) I-G_{1}\right)^{-1}\left\{G_{2}\left[H_{1}\left(s_{1}\right) \otimes H_{1}\left(s_{2}\right)+H_{1}\left(s_{2}\right) \otimes H_{1}\left(s_{1}\right)\right]\right\} \\
& H_{3}\left(s_{1}, s_{2}, s_{3}\right)=\frac{1}{6}\left(\left(s_{1}+s_{2}+s_{3}\right) I-G_{1}\right)^{-1}\left\{G _ { 2 } \left[2 H_{1}\left(s_{1}\right) \otimes H_{2}\left(s_{2}, s_{3}\right)+\right.\right.
\end{aligned}
$$

STORM (Cont’d)

- Reusing Krylov subspace vectors in higher order TF's:

$$
\begin{aligned}
& H_{1}(s)=\left(s I-G_{1}\right)^{-1} b=-\left(I-s G_{1}^{-1}\right)^{-1} G_{1}^{-1} b=-G_{1}^{-1} b-G_{1}^{-2} b s-G_{1}^{-3} b s^{2}-\cdots \\
& \in \operatorname{span}\left[v_{1} v_{2}\right. \text { Commonly known as the Krylov } \\
& H_{2}\left(s_{1}, s_{2}\right)=\frac{1}{2}\left(\left(s_{1}+s_{2}\right) I-G_{1}\right)^{-1}\left\{G_{2}\left[H_{1}\left(s_{1}\right) \otimes H_{1}\left(s_{2}\right)+H_{1}\left(s_{2}\right) \otimes H_{1}\left(s_{1}\right)\right]\right\} \\
& =-\frac{1}{2}\left(I-\left(s_{1}+s_{2}\right) G_{1}^{-1}\right)^{-1}\left\{G_{1}^{-1} G_{2}\left[H_{1}\left(s_{1}\right) \otimes H_{1}\left(s_{2}\right)+H_{1}\left(s_{2}\right) \otimes H_{1}\left(s_{1}\right)\right]\right\} \\
& \in \operatorname{span}\left\{G_{1}\left(G_{2} V_{1} \otimes V_{1}\right\}\right. \text { Same structure as seen before, same } \\
& \text { trick applies! } \\
& H_{3}\left(s_{1}, s_{2}, s_{3}\right)=\frac{1}{6}\left(\left(s_{1}+s_{2}+s_{3}\right) I-G_{1}\right)^{-1}\left\{G _ { 2 } \left[2 H_{1}\left(s_{1}\right) \otimes H_{2}\left(s_{2}, s_{3}\right)+\right.\right.
\end{aligned}
$$

STORM NMOR Flow

Nonlinear dynamical system in DAE or ODE

STEROID tensor decomp

Symmetric tensor reformulation

STORM NMOR projection

Reduced-order dynamical system in symmetric tensor model

Example 1: Double Balanced Mixer

ROM size and CPU time of MOR					
Method	k_{1}	k_{2}	k_{3}	CPU time (s)	size of ROM
NORM	2	2	-	35.33	48
TNMOR	2	2	-	9.53	36
STORM	2	2	2	16.31	49

CPU times and errors of transient simulations

Transient	full model	NORM	TNMOR	STORM
size	93	48	36	49
CPU time (s)	991.51	172.73	16.86	3.23
speedup	-	$6 x$	60 x	300 x
error	-	5.05%	3.24%	4.06%

Example 2: Nonlinear Transmission Line

Method	k_{1}	k_{2}	CPU time	size of ROM
NORM	2	4	0.5 s	15
STORM	2	4	0.4 s	15

CPU times and errors of transient simulations

Transient	full model	NORM	STORM
size	80	15	15
CPU time (s)	33.61	16.38	7.18
speedup	-	2 x	4 x
error	-	0.03%	0.03%

Conclusions

STORM: Symmetric tensor-based NMOR

- Utilizes structure of a symmetric tensor to accurately and efficiently model the high-order nonlinear dynamic system
- Represents the symmetric tensor model via symmetric tensor decomposition, reduces the computational and storage cost
- Achieves better speedup in transient simulation compared to other NMOR methods
- Avoids the low-rank limitation of previous tensor-based methods such as TNMOR

Thank
 You

