
Laboratory for Embedded and Programmable Systems



Design Space Exploration of FPGA-Based Deep Convolutional Neural Networks

Machine Vision: Past, Present and Future!

Feature Extraction Approaches
– Hand crafted features such as HoG and SIFT

– Automated features extraction using Convolutional Neural Networks

[Krizhevsky et al. 2012]dlib.net

CNN Based Feature Extraction

– Very effective in different 
vision tasks

– Very high computational 
complexity
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Precision – Depth Tradeoff

AlexNet

VGG A
VGG B

VGG D VGG E
GoogleNet
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Dataset: ImageNet 2012 – Top 5 Error [Simonyan 2015]

Higher Depth

Higher Precision

Higher Execution Time

Higher Power Consumption

Mobile devices have to offload the 
computation to a cloud.
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Implementation Choices

An energy efficient and fast implementation of DCNNs is very beneficial for mobile devices. This can be 
achieved by hardware based acceleration of DCNNs. 
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AlexNet
Convolutional Layers.

Over 90% of 
computation time.

Fully Connected Layers. 
They can extract local 
and global features. 

Classifier
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2D Convolution

• Center element of kernel is 
placed on each pixel of Input 
Feature Map (IFM)

• Convolution Result:
4 × 0 + 0 × 0 + 0 × 0 + 0 × 0 + 0 × 1
+ 0 × 1 + 0 × 0 + 0 × 1 + −2 × 4 = −8

developer.apple.com
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3D Convolution

• Each Output Feature Map 
(OFM) is the result of a 3D 
convolution of the Input 
Feature Map (IFM) with a 
Kernel stack. 

• Example
𝑂𝐹𝑀𝐴 = 3𝐷𝐶𝑜𝑛𝑣 𝐼𝐹𝑀,𝐾𝑒𝑟𝑛𝑒𝑙𝐴

∀ 𝑖 ∈ 0, 1, … , 255 : 𝑂𝐹𝑀𝑖 = 3𝐷𝐶𝑜𝑛𝑣 (𝐼𝐹𝑀,𝐾𝑒𝑟𝑛𝑒𝑙𝑖)
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Parallelism Sources

• Inter Layer Parallelism

• Inter Output Parallelism
– Compute different OFMs in 

parallel

• Inter Kernel Parallelism
– Compute one OFM in parallel

• Intra Kernel Parallelism 
– Compute one convolution in 

parallel
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Design Philosophy

• DCNNs
– Computation bound

– Communication bound

• Computation – Communication balance
– Memory model

– Computation model
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Tilling in Convolutional Layers
N M
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IFM’s tile 
size: 𝑇𝑛

OFM’s tile 
size: 𝑇𝑚

Column Tile 
Size: 𝑇𝑐

Row Tile 
Size: 𝑇𝑟

𝑇𝑖

𝑇𝑗

From Previous Layer To Next Layer

Input Feature 
Maps

Output 
Feature Maps

Kernels
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The Architecture Template

• Intra Kernel Parallelism

– PCE: Parallel Convolution Engine

– Here the number of parallel 
multiplications (𝑇𝑘) is 4. 

• Inter Kernel Parallelism

– Convolve different IFMs

• Inter Output Parallelism

– PCEs with different weights
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Computation Model

• Number of cycles in tiled model:
𝐶𝑦𝑐𝑙𝑒𝑠 =

#𝑅𝑜𝑢𝑛𝑑𝑠 × #𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑛𝑑

• #𝑅𝑜𝑢𝑛𝑑𝑠 =
𝑀

𝑇𝑚
×

N

𝑇𝑛
×

𝑅𝐶

𝑇𝑟𝑇𝑐
×

𝐾

𝑇𝑖
×

𝐾

𝑇𝑖

• #𝑂𝑝𝑠 𝑝𝑒𝑟 𝑟𝑜𝑢𝑛𝑑 = (𝑇𝑟𝑇𝑐 ×
𝑇𝑖𝑇𝑗

𝑇𝑘
+ 𝑃)
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Memory Model

• Computation to communication ratio:

𝐶𝑇𝐶 =
𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛

=
2 ×𝑀 ×𝑁 × 𝑅 × 𝐶 × 𝐾 × 𝐾

𝛼𝑖𝑛 × 𝛽𝑖𝑛 + 𝛼𝑜𝑢𝑡 × 𝛽𝑜𝑢𝑡 + 𝛼𝑤𝑔ℎ𝑡 × 𝛽𝑤𝑔ℎ𝑡

• Weight’s buffer size
𝛽𝑤𝑔ℎ𝑡 = 𝑇𝑚 × 𝑇𝑛 × 𝑇𝑖 × 𝑇𝑗

• Number of loads and stores of weights

𝛼𝑤𝑔ℎ𝑡 =
𝑀

𝑇𝑚
×
𝑁

𝑇𝑛
×
𝑅

𝑇𝑟
×
𝐶

𝑇𝑐
×
𝐾

𝑇𝑖
×
𝐾

𝑇𝑗

OFM
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Design Space Exploration

• Goal
– Maximize throughput and CTC

• Constraints
– Memory bandwidth

– On-chip memory

– Area limit (computation)

• Approach
– Explore the design space for 

different values of 𝑇𝑚, 𝑇𝑛, 𝑇𝑟, 𝑇𝑐, 
𝑇𝑖 and 𝑇𝑗.
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Re-configurability Effects (1)
La

ye
r Dynamic 𝑻𝒎, 𝑻𝒏 and 𝑻𝒌 Dynamic 𝑻𝒎 and 𝑻𝒏 Fixed 𝑻𝒎, 𝑻𝒏 and 𝑻𝒌

𝑇𝑚 𝑇𝑛 𝑇𝑘 Cycles GFLOPS 𝑇𝑚 𝑇𝑛 𝑇𝑘 Cycles GFLOPS 𝑇𝑚 𝑇𝑛 𝑇𝑘 Cycles GFLOPS

1 16 3 10 117975 86 48 3 3 124025 85 16 3 9 127050 83

2 4 24 5 233280 96 10 16 3 255879 87 16 3 9 279936 80

3 15 32 1 79092 95 16 10 3 79092 95 16 3 9 87204 86

4 15 32 1 118638 95 32 5 3 118638 95 16 3 9 129792 86

5 10 48 1 79092 95 10 16 3 79092 95 16 3 9 86528 86

Sum 628077 656726 755642
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Re-configurability Effects (2)

– Dynamic re-configurability has a minimal effect on the performance. 
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Performance Comparison (1)

ICCD2013
[Peeman 2013]

PACT2010
[Cadambi 2010]

ISCA2010
[Chakradhar 2010]

ISFPGA2015
[Zhang 2015]

Proposed Sol.

Precision Fixed Fixed Fixed 32bits float 32bits float

Frequency 150 MHz 125 MHz 200 MHz 100 MHz 100 MHz

FPGA Chip VLX240T SX240T SX240T VX485T VX485T

Performance 17 GOPs 7.0 GOPs 16 GOPs 61.62 GFLOPs 84.2 GFLOPs

GOPs/Slice 4.5E-04 1.9E-04 4.3E-04 8.12E-04 11.09E-04
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Performance Comparison (2)
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Conclusion

• Template architecture for convolution acceleration

• Analytically characterize performance and memory 
requirements

• Expand the design space to find best architecture

– Parallel Convolution Engines

– Tiling scheme expanded to kernel level

• Simulation shows speedup of 1.4X … 1.9X over existing 
accelerators
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Thank you!
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