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 One of the many different types of biochips

 Based on multilayer soft lithography technology

 Functional units are fabricated by elastomer material 

(polydimethylsiloxane, PDMS)

Flow-Based Microfluidic Biochips 

3http://groups.csail.mit.edu/cag/biostream/



Schematic of flow-based biochips
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 Used to control the movement of flow

 Located between control and flow channels at their 

intersection region
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Microvalve

1. Load sample on top 2. Load sample on bottom 3. Rotary Mixing

http://groups.csail.mit.edu/cag/biostream/



Design of  Flow-Based Biochips 
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Flow-Layer Design

Control-Layer Design

(1) Sequencing graph (2) Scheduling (3) Placement & Routing

(4) Microvalve position (5) Microvalve addressing (6) Control-layer routing



Flow-Layer Design
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(1) Sequencing graph   
A directed acyclic graph specifying the sequential order of operations

(2) Resource binding and scheduling
Choosing the specific component for each operation 

Computing the starting and finishing time of each operation

(3) Component placement & channel routing
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Problem Formulation
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 Integrated placement and routing method is proposed

 Sequence-pair-base placement with simulated 

annealing optimization 

 Negotiation-based routing method is adopted for 

channel routing

 Placement adjustment method

 Routing feedback mechanism

Contributions
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Overall Design Flow of Our Approach
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Sequence-pair (SP) representation
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 SP enables a solution space polynomial-admissible

1. The solution space is finite

2. Every solution is feasible

3. Realization of a code is possible in polynomial time

4. There exists a code corresponds to one of the optimal 

solutions

 Set of components: M = {a, b, c, d, e, f}

 SP code: (s1, s2)

 Rule for explaining the SP code

A. If a is before b in both s1 and s2, then a is on the left side 

of b

B. If a is before b in s1, and after b in s2, then a is above b. 



Sequence-pair (SP) representation
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Simulated annealing-based placement (1) 
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 Initial code SP = (s1, s2)

 Expanded spacing vector

EX = {      }      EY = {      }                            

 Placement state ST = (s1, s2, EX, EY)

 Initial temperature T

 Energy function E(ST) for placement ST

 If E(ST’) < E(ST) or p < p0, accept the new solution 

ST’

iex iey min ie ex maxiey e

( ) ( ')

0 [0,1]
E ST E ST

Tp e p

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Simulated annealing-based placement (2) 
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Simulated annealing-based placement (3) 
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 Energy function of placement state ST

 A:   area of the minimum bounding box of all 

placement components

 C:   total number of crossings between line 

segments corresponding to the nets

 L:   sum of Manhattan distances of the nets

 L2: sum of square of Manhattan distances 

corresponding to the nets



Negotiation-Based Routing
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 Cost function for history cost

 is current history cost of routing grid      for 

iteration

 is the base history cost

 is the history cost in iteration

 is set to be 0.1

1( )rhC g  g

1r 

bC

( )rhC g r




Negotiation-Based Routing
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Routing Feedback and Placement Adjustment

23

SP code keep the same

Corresponding components 

are pushed away 
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With and without placement adjustment
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With and without placement adjustment
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With and without placement adjustment
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Comparison with the other method
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Comparison with the other method
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Comparison with the other method
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 An effective integrated placement and routing flow

 Using sequence-pair-based iterative placement

 Routing feedback and placement adjustment

 Real-life biochemical applications validate the 

presented method effectiveness

Summary
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