

New York University Abu Dhabi Modern Microprocessor Architectures Lab nyuad.nyu.edu/momalab

Enabling Multi-Layer Cyber-Security Assessment of Industrial Control Systems through Hardware-in-the-Loop Testbeds

A. Keliris, C. Konstantinou, N. Tsoutsos NYU School of Engineering

R. Baiad, <u>M. Maniatakos</u> NYU Abu Dhabi

ASP-DAC 2016, Macao

Outline

- Introduction to ICS cyber-security
- Assessment environment considerations
- ICS cyber-security testbed design
- ⊙ Hardware-In-The-Loop Demo
- Conclusion

What are Industrial Control Systems?

ICS components

10/03/201 6

Modernization of ICS

- Adoption of IT technologies for increased efficiency, controllability and reliability
- Use of COTS Hardware and Software
 ARM, Linux
- Advanced features
 - GUI web-servers for management, monitoring and configuration
 - ⊙ FTP access

 $\odot\,\ensuremath{``Smart''}\xspace$ sensors and actuators

ICS targeting cyber-attacks

- Cyber-Security of ICS is critical
- Large number of cyber-attacks on ICS
 Baku-Tbilisi-Ceyhan pipeline (2008)
 - Stuxnet (2010)
 - ⊙ Ukraine power-outage (Dec. 21, 2015)
- Urging need for thorough cyber-security assessment

⊙ At ICS design time and during ICS lifetime cycle

Outline

- Introduction to ICS cyber-security
- Assessment environment considerations
- \odot ICS cyber-security testbed design
- Hardware-In-The-Loop Demo
- Conclusion

IT vs. OT security

 \odot Major differences between IT and OT

- Physical interaction
- Security objectives
- Component lifespan
- Response time criticality
- Software changes/updates

Protocols

ICS layers

10/03/201 6

Example attacks on ICS layers

Layer	Vulnerabilities & Threats
Hardware	• Hardware Trojans
	• Fault Injection Attacks
	• Side-Channel Attacks
Firmware	• Firmware reverse engineering
	• Firmware vulnerabilities
	• Firmware modifications
Software	• Memory corruption & control flow attacks
	• Web attacks on multipurpose workstations
	• Zero-day vulnerability markets
Network	• Firewall misconfiguration
	• Protocol vulnerabilities
	• Internet-facing ICS
Process	• Process-aware manipulation of control logic & process variables
	• False data injection attacks
	• Automatic payload generation

ICS testbed requirements

- Adhere to OT security objectives
- Enable studying attacks at all layers
 Individual layer and cross-layer attacks
- Capture complex ICS behavior
 For operational and non-operational conditions
- Support for modern and legacy components
- \odot Cost-effective and scalable

Outline

- Introduction to ICS cyber-security
- Assessment environment considerations
- \odot ICS cyber-security testbed design
- Hardware-In-The-Loop Demo
- Conclusion

Possible approaches

- Testbed cannot include production environment
 - Hazardous: Physical world interaction
- Complete duplication of ICS setup
 Not cost effective
- Software-only approach
 Software models and simulation

Software-only testbed

- + cost effective
- + scalable
- + fast simulation
- cannot capture complexity of ICS
- analysis is restricted
- software models introduce delays and simplifying assumptions
- heavy dependence on model quality

Hardware-In-The-Loop

- Assessment environment must include hardware components
- Hybrid approach: Duplication & Software
- ⊙ Hardware-In-The-Loop (HITL)
 - \odot Cost effective, fast simulation
 - Modular design, scalable
 - ⊙ All ICS layers can be studied
 - Hardware components enable realistic and accurate security analysis of ICS

HITL setup

Outline

- Introduction to ICS cyber-security
- Assessment environment considerations
- \odot ICS cyber-security testbed design
- Hardware-In-The-Loop Demo
- Conclusion

NYU-AD testbed environment

- Hardware-In-the-Loop setup
- Simulation model of Tennessee Eastman chemical process in Simulink
- 2 cascade PI controllers responsible for Reactor Pressure offloaded to PLC
 Wago 750-881 PLC
 - ⊙ 2 analog inputs, 2 analog outputs
- Communication: Serial Interface Board
 ADC, DAC, voltage amplification

Wago PLC vulnerabilities

- Hardcoded credentials
 Reverse engineered firmware
- Unencrypted network communication
 Reverse engineered communication protocol
- Unauthenticated FTP access
- Secondary Ethernet port allows concurrent connections

Attack methodology

- ⊙ [HW] Connect to secondary Ethernet port
- ⊙ [NW] Establish communication link
- ⊙ [FW] Authenticate with hardcoded credentials
- [NW] Download existing ladder logic over FTP
- ⊙ [PR] Modify constant variables in ladder logic
- ⊙ [SW] Calculate new checksum
- [NW] Send modified back to PLC
- [NW] Force-reload the modified ladder project

Attack: Modify integral gain

10/03/201 6

Attack deployment

- Ubuntu phone
 Aquaris BQ E4.5
 Ubuntu 13.04
- Phone application
 Ubuntu SDK
 QML app
- Attack script
 Python 2.7
 socket module

Conclusion

- Critical infrastructure is vulnerable to cyber-attacks
- To study and protect against them we need cyber-security assessment environments (testbeds)
- Presence of hardware is required
- $\odot \rightarrow$ Hardware-in-the-Loop testbeds