Covert Channels Using Mobile Device's Magnetic Field Sensors Nikolay Matyunin, Jakub Szefer, Sebastian Biedermann, Stefan Katzenbeisser

Yale University

Covert channels: scenario

A target computer

- protected by firewalls, IDS etc.
- or even isolated into an air-gap
- infected by the attacker

An attacker

- has no network access
- may have no physical access
- wants to exfiltrate data from the target

The attacker needs a **covert channel** to transmit data

Covert channels: examples

Electromagnetic

- CPU emissions and a dedicated receiver [1]
- CPU-RAM emissions and a mobile phone with patched firmware [2]

Acoustic

• transmission using ultrasonic sounds [3,4]

Thermal

• using built-in thermal sensors [5]

Covert channels: requirements

Our motivation: a new covert channel, applicable to any commonly used hardware

Covert channels: a new approach

Idea: Use of smartphone's magnetic sensors

- installed in every modern smartphone
- used to measure magnetic field along 3 axes
- available through OS API

Basic use case: track phone orientation in space

Our approach: measure magnetic signals emanated from a target device

Hard drive side-channel attack

Previous results: side-channel attack on hard drives (FC'2015)

Head movements lead to EM fluctuations

Magnetic sensors can detect hard drive activity

Hard drive side-channel attack (2)

1. Attacks against a laptop

OS boot fingerprint

Application detection

2. Attacks against a server

28.01.2016 | ASP-DAC 2016 | Nikolay Matyunin | Security Engineering | TU Darmstadt | 7

Electromagnetic covert channel

Basic operation: writing random data to the hard drive produces a single peak

Two sources of the signal

Peaks are different for sources A and B

Signals interfere in the intermediate position C

Amplitude modulation

Transmitter:

Emit a single peak for '1', no activity for '0'

Receiver:

Cross-correlation with predefined patterns

Amplitude modulation: limitations

• Signal fading (theoretically $B \propto \frac{1}{d^2}$)

- Shape of peaks depends on
 - hardware
 - distance We still expect disturbance of the field
 - interference

Periodic-based modulation

Transmitter:

Periodically emit consecutive peaks followed by pause, with two different frequencies

Receiver:

Perform the FFT, detect peaks and choose the corresponding peak frequency

Periodic-based modulation example

Results: signal fading

Results: transmission distance

Using periodic-based modulation, a signal is successfully decoded in the area up to 12cm in front of the laptop

Summary

- A new covert channel is presented
- Dedicated hardware or explicit permissions are not required
- Transmission distance is up to 12cm
- Protection against covert channels is necessary

Thank you!

Countermeasures

1. Hardware level: shield electronic components

2.Software level: limit access to magnetic sensors data

3.**OS level:** generate random I/O operations on a target system

References

- [1] Callan, et al. "A practical methodology for measuring the side-channel signal available to the attacker for instruction-level events." *Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture*. 2014.
- [2] Guri, Mordechai, et al. "GSMem: data exfiltration from air-gapped computers over GSM frequencies." *24th USENIX Security Symposium*. 2015.
- [3] M. Hanspach and M. Goetz. Recent developments in covert acoustical communications. In Sicherheit, pages 243–254, 2014.
- [4] Deshotels, Luke. "Inaudible sound as a covert channel in mobile devices." *Proc. 8th USENIX Conf. Offensive Technologies*. 2014.
- [5] Guri M. et al. BitWhisper: Covert Signalling Channel between Air-Gapped Computers using Thermal Manipulations //arXiv preprint arXiv:1503.07919. – 2015.

Picture on the slide 5 is a derivative of a photo by Creative Tools, <u>CC BY 2.0</u>.