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Power efficiency

» High energy efficiency is required

Video gaming Image processing
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Approximate computing

» Exploiting tradeoffs between quality and
complexity

DCT Image Processing Machine Learning

Original method Approximate method

Quality: 2.82% Reduction Quality: 1.3% Reduction
Performance: 57.44%5 Improvement Performance:; 4.9/ Improvement



Conventional Computation Reuse scheme

» Brief workflow of traditional computation
reuse scheme

Computation buffer
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Efficacy of Conventional Reuse Scheme

» Proportion of reuse opportunities exploited

Percentage of bypassed computations(%)
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Reuse potential:
As much as 99%

Conventional reuse:
As low as 27%

In approximate application, there’s great reuse potential

Tight reuse requirement prevents CONVENTIONAL CRU
from achieving high speedup >




Requirements for approximate computing

» To enable computation reuse for approximate
computing, we need

Similarity Quantification

A criterion to measure the similarity between
different

Branches Resolving

Reduce the latency of packets according to
traffic heterogeneity




Workflow of Proposed ACR

» Two extra steps should be included into
approximate computing process

Branch Similarity
—
Resolving quantification Computation buffer
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Similarity Quantification

» Prior approximate reuse scheme (i.e. RACB

scheme from islped 2005)

Main idea: masking LSBs of values of inputs, and requiring the MSBs to
be equal for approximate reuse

Pros:

1. Easy to implement

2. Effective for specific applications
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Cons:
1. Too arbitrary

2. Limited speedup

Significance aware scheme
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sighificance aware approximate reuse

» Capture the relation between inputs and
outputs and estimate the significance of
Inputs

_ _ Use executed computation to
Code region or function model the code region or function

at runtime
4 )

We have:
1)Values of inputs LA
2)Values of outputs® <2 * /. /" V.l %

3)Branch decisions f A

_ ) |

from compiler explicit markers

blackbox

Perturbation analysis cannot be applied



Proposed significance aware approximate reuse

» Linear regression based statistical technique
to obtain significance of inputs

E.g. inversek2j() benchmark:
z = acos((x? + y? — 0.5)/0.5) (1)

Output = asin ((y X (0.5 4 0.5 X cos(z)) — x x 0.5 X sin(z))/(x? + yz)) (2)
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Resolving conditional branches

» Logistic regression based statistical technique
to modeling conditional branches in function

» Then the model is used to obtain branch
decision of incoming



Speculative branch prediction

Actual conditional branch:
if(qgo — pO < 20)

Predicted conditional branch:

—0.96p0 + 0.08p1 — 0.06p2
+q0 — 0.07¢1 + 0.03¢2 = 20.09
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Overview of proposed ACR scheme

1. Trained with computations executed in history
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» Axbench: a benchmark designed for
approximate computing from Georgia tech

Pricing a portfolio of options
Blackscholes with tﬁe Ezack-Schﬂlesiquatiﬂn 0 >
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or 2-joint arm
Sobel edge detector in
Image Processing
Triangle intersection detection

in 3D gaming
H264 Loop filter in h264 6 >
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Blackscholes
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Storage

> Area overhead:

Storage
Cost(kB) 65.73 40.08 29.05 37.14 42.38




Conclusion

» Approximate computing can exploit the
potential of computation reuse

» Not all error-tolerant application are suitable
for approximate computation reuse

» Error-tolerant applications which benefit
most from ACR would be:

= Time consuming: contains complex function like sin(),
cos(), exponential function

= Contain small number of input parameters
= Have a few number of conditional branches



Thanks for listening

Question?



