
ACR: Enabling Computation Reuse
through Approximate Computing
ACR: Enabling Computation Reuse
through Approximate Computing

Xin He, Guihai Yan, Yinhe Han and Xiaowei LI

State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy of Sciences

(ICT, CAS)

Power efficiencyPower efficiency

High energy efficiency is required

Robotics

Video gaming Image processing

Machine learning
1 2

3 4

Approximate computingApproximate computing

Exploiting tradeoffs between quality and
complexity

DCT Image Processing

Quality: 2.82% Reduction

Performance: 31.44% Improvement

Machine Learning

Quality: 1.3% Reduction

Performance: 4.97X Improvement

Original method Approximate method

Conventional Computation Reuse schemeConventional Computation Reuse scheme

Brief workflow of traditional computation
reuse scheme

Reuse requirement
If and only if input values of incoming calls

equal to the ones in history

Efficacy of Conventional Reuse SchemeEfficacy of Conventional Reuse Scheme

Proportion of reuse opportunities exploited

Reuse potential:
As much as 99%

Conventional reuse:
As low as 27%

In approximate application, there’s great reuse potentialIn approximate application, there’s great reuse potential

Tight reuse requirement prevents CONVENTIONAL CRU
from achieving high speedup

Tight reuse requirement prevents CONVENTIONAL CRU
from achieving high speedup

Requirements for approximate computingRequirements for approximate computing

To enable computation reuse for approximate
computing, we need

Similarity Quantification

Branches Resolving

A criterion to measure the similarity between
different

Reduce the latency of packets according to
traffic heterogeneity

Workflow of Proposed ACRWorkflow of Proposed ACR

Two extra steps should be included into
approximate computing process

Deciding the
computation pattern

Deciding the
computation pattern

Calculating the
similarity

Calculating the
similarity

Similarity Quantification Similarity Quantification

Prior approximate reuse scheme (i.e. RACB
scheme from islped 2005)
Main idea: masking LSBs of values of inputs, and requiring the MSBs to

be equal for approximate reuse

Pros:
1. Easy to implement
2. Effective for specific applications

Cons:
1. Too arbitrary
2. Limited speedup

significance aware approximate reusesignificance aware approximate reuse

Capture the relation between inputs and
outputs and estimate the significance of
inputs

Code region or function

at runtime

Perturbation analysis cannot be applied

Use executed computation to

model the code region or function

We have:
1)Values of inputs
2)Values of outputs
3)Branch decisions

from compiler explicit markers

Proposed significance aware approximate reuseProposed significance aware approximate reuse

 Linear regression based statistical technique
to obtain significance of inputs

𝑧 = acos 𝑥2 + 𝑦2 − 0.5 /0.5 (1)

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑎𝑠𝑖𝑛 𝑦 × 0.5 + 0.5 × 𝑐𝑜𝑠 𝑧 − 𝑥 × 0.5 × sin(𝑧) / 𝑥2 + 𝑦2 (2)

E.g. inversek2j() benchmark:

Resolving conditional branchesResolving conditional branches

 Logistic regression based statistical technique
to modeling conditional branches in function

Then the model is used to obtain branch
decision of incoming

Speculative branch predictionSpeculative branch prediction

Actual conditional branch:

Predicted conditional branch:

Overview of proposed ACR schemeOverview of proposed ACR scheme

Trained with computations executed in historyTrained with computations executed in history

Its computation pattern

is specified first

Its computation pattern

is specified first
For an incoming

Computation,

Its similarity with history

computation is obtained

Its similarity with history

computation is obtained
Then,

BenchmarksBenchmarks

Axbench: a benchmark designed for
approximate computing from Georgia tech

The percentage of computation effort The percentage of computation effort

Storage Storage

Area overhead:

ConclusionConclusion

Approximate computing can exploit the
potential of computation reuse

Not all error-tolerant application are suitable
for approximate computation reuse

Error-tolerant applications which benefit
most from ACR would be:

 Time consuming: contains complex function like sin(),
cos(), exponential function

 Contain small number of input parameters

 Have a few number of conditional branches

Thanks for listening!

Question?

