ACR: Enabling Computation Reuse
through Approximate Computing

Xin He, Guihai Yan, Yinhe Han and Xiaowei LI

State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences
(ICT, CAS)

E R A iiiee TOMIEATHLRLA

E ERGY EFFI CIENT RELI ABLE AR CHITECTURE Institute of Computing Technology,Chinese Academy of Sciences

Power efficiency

» High energy efficiency is required

Video gaming Image processing

"

\ A 2

?'l antennae _ ocelli
1
1

/
r
|

-2}

-3}
pollination & docking appendages

—l3 -3 —2 -1 0 1 2 3 a

Approximate computing

» Exploiting tradeoffs between quality and
complexity

DCT Image Processing Machine Learning

Original method Approximate method

Quality: 2.82% Reduction Quality: 1.3% Reduction
Performance: 57.44%5 Improvement Performance:; 4.9/ Improvement

Conventional Computation Reuse scheme

» Brief workflow of traditional computation
reuse scheme

Computation buffer

4 ™
I, I, e I. Out,
Incoming function call ftom 1 Reusing
Compare | jom 2 sucessiul - prior output

))) match
Inputs: | 4, i, || i |::> . :{> out

o Biackscholes(] have six input

parameters

Itam n

. /

_ If and only if input values of incoming calls
Reuse requirement .
equal to the ones in history

Efficacy of Conventional Reuse Scheme

» Proportion of reuse opportunities exploited

Percentage of bypassed computations(%)

—h
o
o
| |

®
o

o]
o

S
o

Mo
o

I Conventional Relse scheme

Il Fcuse scherne for approximate computing | |

Ihversek2jBlacksholes HR64 Sobel

Jmeint

Reuse potential:
As much as 99%

Conventional reuse:
As low as 27%

In approximate application, there’s great reuse potential

Tight reuse requirement prevents CONVENTIONAL CRU
from achieving high speedup >

Requirements for approximate computing

» To enable computation reuse for approximate
computing, we need

Similarity Quantification

A criterion to measure the similarity between
different

Branches Resolving

Reduce the latency of packets according to
traffic heterogeneity

Workflow of Proposed ACR

» Two extra steps should be included into
approximate computing process

Branch Similarity
—
Resolving quantification Computation buffer

_‘-\I
_ /r ID BFV L I, - I, Out,
e ———
Incoming function call j tem
PATE | [tem

Inputs: | 4 1 | i, |:Il> .

e.g. Biockscholes() have six input
paramatars

[tem

(S /‘

Deciding the - Calculating the
computation pattern similarity

Similarity Quantification

» Prior approximate reuse scheme (i.e. RACB

scheme from islped 2005)

Main idea: masking LSBs of values of inputs, and requiring the MSBs to
be equal for approximate reuse

Pros:

1. Easy to implement

2. Effective for specific applications

c o o o2
A O o =

MNormalized errors
[} %]

Inversek2|

0

25 50 75 100
Reusability

MNormalized errors

= = = HACB scheme

0.8

Blackscholes

25 50 75 100
Reusability

MNormalized errors

Cons:
1. Too arbitrary

2. Limited speedup

Significance aware scheme

1
08
06
0.4
0.2

0

Ty
MNormalized errors

0

25 50 75 100
Reusability

=
5]

06

0.4

Sobel

0

25 50 75 100
Reusability

sighificance aware approximate reuse

» Capture the relation between inputs and
outputs and estimate the significance of
Inputs

_ _ Use executed computation to
Code region or function model the code region or function

at runtime
4)

We have:
1)Values of inputs LA
2)Values of outputs® <2 * /. /" V.l %

3)Branch decisions f A

_) |

from compiler explicit markers

blackbox

Perturbation analysis cannot be applied

Proposed significance aware approximate reuse

» Linear regression based statistical technique
to obtain significance of inputs

E.g. inversek2j() benchmark:
z = acos((x? + y? — 0.5)/0.5) (1)

Output = asin ((y X (0.5 4 0.5 X cos(z)) — x x 0.5 X sin(z))/(x? + yz)) (2)

1.6

—L
o
o

Qutput value
ey
L
Relative error

= = = Predicted computation model
- = = Actual computation model

I Calculated through regression model
I ~pproximate computation reuse

1.4 1.45 1.5 1.55 1.6
0.403-1.982x+0. 32?3(Blacksholes Inversek2j H264 Sobel

Resolving conditional branches

» Logistic regression based statistical technique
to modeling conditional branches in function

» Then the model is used to obtain branch
decision of incoming

Speculative branch prediction

Actual conditional branch:
if(qgo — pO < 20)

Predicted conditional branch:

—0.96p0 + 0.08p1 — 0.06p2
+q0 — 0.07¢1 + 0.03¢2 = 20.09

—
-]
o

Value of input Q0
e} o
(] =

-
=

== =Predicted classification line *
| |— =Actual classification line .
. @
L]

.. S

L L] ’.,*
* .. i}.)

: «* -'I’u'..-
. . """" ;1‘ .. "l
. 7% !*!'-i .
T 15« AR Lt A B

-~ -

| A | 1 L
40 50 60 70

Value of input PO

Overview of proposed ACR scheme

1. Trained with computations executed in history

— - — 1\
Logistic Regression . A (X) MLRegression |

ecocffise X +¢ >0 ¢/ (X)=signie X +c
Modeling ‘
@ Branch nottaken * ‘

@ Branch taken [® Computed Instancel
> X, >y | |

___________ — -
b ! 3 [
| \ Branch Resolving | Sensitivity aware Ar.R
Instance arrival _ Branch feature vector N
R 1).B1 nottaken Branch | ng 11.(Y —-X) <Th Approximated
000 ' Decisions gl - Results of .Y
— @) () —— 2).B2 taken I Y >
3).B5 taken ch ! I
, 4).eenee Cls
...... X1,
| ¥
2 Workflow of Speculative Approximate Computation Reuse
e

For an incoming | Its computation pattern Then Its similarity with history
Computation, is specified first ' computation is obtained

» Axbench: a benchmark designed for
approximate computing from Georgia tech

Pricing a portfolio of options
Blackscholes with tﬁe Ezack-Schﬂlesiquatiﬂn 0 >
Inversek?; thl[}bm‘ic_: Inverse kinematics 5 0
or 2-joint arm
Sobel edge detector in
Image Processing
Triangle intersection detection

in 3D gaming
H264 Loop filter in h264 6 >

Sobel

Jmeint

Blackscholes

—
o
o

)
o

Computation efforts(%)

]

Add
Mul
Exp

Tr

Pow

100

1 50

Inversek2j

T 5 o
2 =S 3

Tri

The percentage of computation effort

150 —

100 |

50

Pow —"

Add
Mul
Exp

Tri |
Log ¢

200

100 ;

Jmeint

Add

Mul

Exp |

Trt
Pow |

400

1 200 ¢

H264

Add

Mul

150

100 ¢

50 |

Average

Storage

> Area overhead:

Storage
Cost(kB) 65.73 40.08 29.05 37.14 42.38

Conclusion

» Approximate computing can exploit the
potential of computation reuse

» Not all error-tolerant application are suitable
for approximate computation reuse

» Error-tolerant applications which benefit
most from ACR would be:

= Time consuming: contains complex function like sin(),
cos(), exponential function

= Contain small number of input parameters
= Have a few number of conditional branches

Thanks for listening

Question?

