
Balancing Lifetime and Soft-Error

Reliability to Improve System

Availability

Junlong Zhou , Xiaobo Sharon Hu , Yue Ma , Tongquan Wei
1* 2 2 1

Department of Computer Science and Technology

East China Normal University, China

Department of Computer Science and Engineering

University of Notre Dame, USA

Presenter

ASPDAC 2016, Macao, China

1

2

*

Outline

 Introduction
 Availability

 Preliminary Knowledge
 Permanent Fault

 Transient Fault

Our Method
 Formula to Calculate the MTTF due to Transient

Fault

 Framework to Maximize System Availability

 Heuristic Algorithm to Improve Reliability

 Simulation Setup and Results

 Summary and Future Work

Introduction to Availability

What’s availability?

 Availability is the state if an application being

accessible to the end user, when running on a

specific platform.

 Unavailability (or called outage/downtime) is the

time that a system is not available to an end

user.

Cost of Outage/Downtime

Financial Cost of Outage Per Hour among Various Industries

Thus, we want to decrease outage (increase availability).

Source: Contingency Planning Research & Strategic Research Corp.

Types of Outages

Two main types
Planned outages: Planned Maintain and Updates

Unplanned outages: Hardware Failure + System

Software Bugs + Application Software Bugs

Source: Standish Group

Reasons of Outages

 Planned outages (controllable)
 Such as data base reorganization, release

changes, network reconfiguration

 Unplanned outages (unexpected)
 Such as hardware failure and software failure

more

than 50%,

important

Improve System Availability

Questions:
1. What are the permanent fault and transient fault?

2. How to improve the two reliabilities for achieving

high availability?

Handle the

permanent

fault

Handle the

transient fault

Improve

lifetime

reliability

Improve

soft-error

reliability

Improve

system

availability

Permanent Fault

What’s permanent fault? (or hard error)
 A type of failure that continues to exist until the

faulty hardware is repaired or replaced

What causes permanent fault?
 Four main IC-dominant failure mechanisms:

EM, TDDB, SM, and TC

IC-Dominant Failure Mechanisms

 Electromigration (EM)
 Dislocation of metal atoms caused by momentum

imparted by electrical current in wires and vias

 Time-dependent dielectric breakdown (TDDB)
 Deterioration of the gate oxide layer

 Stress migration (SM)
 Caused by the directionally biased motion of atoms in

metal wires due to mechanical stress

 Thermal cycling (TC)
 Wear due to thermal stress induced by mismatched

coefficients of thermal

IC-Dominant Failure Mechanisms

 Failure rate 𝜆 for EM, TDDB, and SM can be

computed as

𝜆 = 𝐾1 ⋅ 𝑒
−
𝑘2
𝑇

𝑇: the temperature

𝐾1, 𝐾2: temperature-independent constants

IC-Dominant Failure Mechanisms

 Number of cycles to failure 𝑁𝑇𝐶 can be

computed as

𝑁𝑇𝐶 = 𝐾3 ⋅ Δ𝑇 − Δ𝑇0
𝐾4 ⋅ 𝑒

−
𝑘5
𝑇𝑚𝑎𝑥

𝐾3, 𝐾4 , 𝐾5: temperature-independent constants

𝛥𝑇: the thermal cycle amplitude

Δ𝑇0: the temperature at which inelastic deformation begins

𝑇𝑚𝑎𝑥: the maximal temperature during the cycle

Estimate Lifetime Reliability

Mean Time to Failure (MTTF)
 A common metric to quantify lifetime reliability

 Xiang’s tool to derive the MTTF due to

permanent fault
 Integrates three levels of models: device-,

component-, and system-level models

 Consider four IC-dominant failure mechanisms:

EM, TDDB, SM, and TC

 Output: the system-level MTTF

Xiang’s tool: Y. Xiang, T. Chantem, R. P. Dick, X. Sharon Hu, L. Shang,

“System-Level Reliability Modeling for MPSoCs,” CODES+ISSS, 2010.

Estimate Lifetime Reliability

Device

specification

Component

specification

Device-level

modeling

EM, SM,

TDDB

TC

Selected

distribution

Component-

level modeling

System-level Monte

Carlo simulation

Lifetime

reliability

Flowchart of Xiang’s tool to estimate lifetime reliability

Transient Fault

What’s transient fault? (soft error)
 A type of failure that appears for a short time and

then disappears without damage to the device

What causes transient fault?
 Electromagnetic interference

 or cosmic radiation

Transient Fault

 Soft-error reliability can be determined by the

exponential failure law

𝜆(𝑓): the fault rate when task 𝜏 operating at frequency 𝑓
𝐶: the number of task cycles

𝑅 𝑓 = 𝑒
−𝜆(𝑓)

𝐶
𝑓

A Uniform Metric

 Need a uniform metric to quantify the two

reliabilities
 User’s concern: mean time to first failure,

regardless of the type of failure

 Difficult to gauge how tradeoffs should be made to

achieve overall high system reliability without a

uniform metric
 Certain design decisions (e.g., task mapping and

voltage scheduling) may increase lifetime reliability

but decrease soft-error reliability or vice versa

Existing Reliability-Aware Methods

Most only focus on one of the two reliability

concerns
 Lifetime reliability: e.g., Chantem et al., DATE

2013; Amrouch et al., ICCAD 2014; Duque et al.,

DATE 2015

 Soft-error reliability: e.g., Li et al., ISCA 2008;

Sridharan et al., ISCA 2010

A few focus on handling permanent and

transient faults simultaneously
 E.g., Chou et al., DATE 2011, Das et al., DATE

2014: use separate metrics to perform reliability

evaluation

Our Contributions

1. An analytical approach to calculate the

MTTF due to transient fault
 Enable the quantification of two reliabilities by a

uniform metric

2. A single-objective optimization problem to

maximize system availability
 Consider both transient and permanent faults

3. A framework and a heuristic algorithm
 Framework: solve the optimization problem

 Heuristic algorithm: improve reliability for a

specific scenario

System Model & Assumptions

A uniprocessor platform
 Supports a discrete set of frequencies

A set of tasks repeatedly running on the

processor

 Tasks are non-preemptive and independent

 Execution of task set in different runs are

independent

Replication to tolerate transient faults
 Single-fault-tolerance

Occurrence of faults in tasks are independent

 No fault propagation

Calculate the MTTF due to Transient Fault

The time to failure due to a transient fault

of task 𝜏𝑖 in the kth run of task set 𝒯𝑛

Transient fault
𝜏1 𝜏2 𝜏𝑖 ⋯ ⋯ 𝜏𝑛 𝜏1 𝜏2 𝜏𝑖 ⋯ ⋯ 𝜏𝑛 𝜏1 𝜏2 𝜏𝑖 ⋯ ⋯ 𝜏𝑛 ⋯

0 𝑇𝑒𝑥𝑒(𝒯𝑛) 2𝑇𝑒𝑥𝑒(𝒯𝑛) (k-1) 𝑇𝑒𝑥𝑒(𝒯𝑛) k𝑇𝑒𝑥𝑒(𝒯𝑛) t

⋯
𝑇𝑒𝑥𝑒(𝒯𝑖)

The time to failure

𝑡 → ∞

Illustration: the task set 𝒯𝑛 = {𝜏1, 𝜏2, ⋯ , 𝜏𝑛} executes

successfully during the prior 𝑘 − 1 runs, but fails in

the 𝑘th run due to the transient fault in task 𝜏𝑖.
 𝑇𝑒𝑥𝑒 𝒯𝑛 = 𝑡𝑖

𝑛
𝑖=1 : total execution time of task set 𝒯𝑛

 𝑇𝑒𝑥𝑒 𝒯𝑖 = 𝑡𝑗
𝑖
𝑗=1 : execution time of tasks 𝜏1 to 𝜏𝑖

 𝑃𝑠𝑢𝑐𝑐 𝒯𝑛,𝑘−1 : probability that the first 𝑘 − 1 runs of 𝒯𝑛 are

all successful

 𝑃𝑓𝑎𝑖𝑙 𝜏𝑖 : probability that 𝜏𝑖 is erroneous but 𝜏1 − 𝜏𝑖−1 in

the same run of 𝒯𝑛 are successful

𝑀𝑇𝑇𝐹𝑇 = { 𝑘 − 1 𝑇𝑒𝑥𝑒 𝒯𝑛

𝑛

𝑖=1

∞

𝑘=1

+ 𝑇𝑒𝑥𝑒 𝒯𝑖 } ⋅ 𝑃𝑠𝑢𝑐𝑐 𝒯𝑛,𝑘−1 ⋅ 𝑃𝑓𝑎𝑖𝑙(𝜏𝑖)

Then, the MTTF due to transient fault, denoted by

𝑀𝑇𝑇𝐹𝑇, can be calculated as

Calculate the MTTF due to Transient Fault

𝑀𝑇𝑇𝐹𝑇 =
𝑇𝑒𝑥𝑒 𝒯𝑛 + 𝑇𝑒𝑥𝑝 𝒯𝑛

𝑃𝑓𝑎𝑖𝑙(𝒯𝑛)
− 𝑇𝑒𝑥𝑒 𝒯𝑛

Through a series of algebraic transformation,

𝑀𝑇𝑇𝐹𝑇 can be derived as

 𝑇𝑒𝑥𝑝 𝒯𝑛 = 𝑇𝑒𝑥𝑒 𝒯𝑖 ⋅ 𝑃𝑓𝑎𝑖𝑙(𝜏𝑖)
𝑛
𝑖=1 denotes the expected

time to failure when the fault occurs in the first run.

Calculate the MTTF due to Transient Fault

Correctness of Our MTTF Formulation

Theorem 1: For any given task set 𝒯𝑛 and any integer

𝑚 ≥ 2 , let 𝒯𝑛
𝑚 be the task set containing 𝑚 runs of 𝒯𝑛,

i.e., 𝒯𝑛
𝑚 = {𝜏1, 𝜏2, ⋯ , 𝜏𝑛, 𝜏1, 𝜏2, ⋯ , 𝜏𝑛, ⋯⋯ , 𝜏1, 𝜏2, ⋯ , 𝜏𝑛}

𝑛×𝑚

.

Then 𝑀𝑇𝑇𝐹𝑇 𝒯𝑛
𝑚 = 𝑀𝑇𝑇𝐹(𝒯𝑛) holds.

 The 𝑀𝑇𝑇𝐹𝑇 is derived when assuming a

workload 𝒯𝑛 is being repeatedly executed forever.
What the 𝑀𝑇𝑇𝐹𝑇 would be if treat two or more runs of

𝒯𝑛 as the given workload being repeated forever?

Problem Formulation

 Definition of availability: 𝐴 =
𝑀𝑇𝑇𝐹

𝑀𝑇𝑇𝐹+𝑀𝑇𝑇𝑅

 For a system that may suffer from both transient and

permanent faults, maximizing system availability

(objective) becomes

max: {
𝑀𝑇𝑇𝐹𝑇

𝑀𝑇𝑇𝐹𝑇 +𝑀𝑇𝑇𝑅𝑇
,
𝑀𝑇𝑇𝐹𝑃

𝑀𝑇𝑇𝐹𝑃 +𝑀𝑇𝑇𝑅𝑃
}

max: {Υ𝑀𝑇𝑇𝐹𝑇 , 𝑀𝑇𝑇𝐹𝑃}

where Υ =
𝑀𝑇𝑇𝑅𝑃

𝑀𝑇𝑇𝑅𝑇
 is assumed to be a given constant.

max min: {Υ𝑀𝑇𝑇𝐹𝑇 , 𝑀𝑇𝑇𝐹𝑃}

same goal

equivalent to

Four Scenarios in Our Problem

 Determine the 𝑀𝑇𝑇𝐹𝑇 using our formula and

the 𝑀𝑇𝑇𝐹𝑃, using Xiang’s tool
 Identify which reliability dominates

 Group the relationship between Υ𝑀𝑇𝑇𝐹𝑇 and

𝑀𝑇𝑇𝐹𝑃 into four scenarios
① 𝛶𝑀𝑇𝑇𝐹𝑇 ≪ 𝑀𝑇𝑇𝐹𝑃
② 𝛶𝑀𝑇𝑇𝐹𝑇 < 𝑀𝑇𝑇𝐹𝑃
③ 𝛶𝑀𝑇𝑇𝐹𝑇 > 𝑀𝑇𝑇𝐹𝑃
④ 𝛶𝑀𝑇𝑇𝐹𝑇 ≫ 𝑀𝑇𝑇𝐹𝑃

The Existence of Four Scenarios

Setup
• the same core, benchmarks, and parameter settings as in

GVLSI’s work and Υ = 1

Framework to Maximize Availability

Start

Calculate 𝑀𝑇𝑇𝐹𝑇
and 𝑀𝑇𝑇𝐹𝑃

𝛶𝑀𝑇𝑇𝐹𝑇
< 𝑀𝑇𝑇𝐹𝑃

𝛶𝑀𝑇𝑇𝐹𝑇
≪ 𝑀𝑇𝑇𝐹𝑃

𝛶𝑀𝑇𝑇𝐹𝑇
≫ 𝑀𝑇𝑇𝐹𝑃

Workload,

processor

specification

Full replication

and speedup
Partial replication

and speedup
DVS-based

strategy

Lifetime reliability-

aware strategy

End

Y

Y N

N

N Y

lifetime reliability dominates soft-error reliability dominates

Countermeasures for Four Scenarios

 𝛶𝑀𝑇𝑇𝐹𝑇 ≪ 𝑀𝑇𝑇𝐹𝑃
 Full replication and speedup

 Every task with a recovery, at maximal frequency

 𝛶𝑀𝑇𝑇𝐹𝑇 < 𝑀𝑇𝑇𝐹𝑃
 Partial replication and speedup

 A part of tasks are replicated or sped up

 𝛶𝑀𝑇𝑇𝐹𝑇 > 𝑀𝑇𝑇𝐹𝑃
 DVS-based strategy

 Reduce the temperature by scaling frequency

 𝛶𝑀𝑇𝑇𝐹𝑇 ≥ 𝑀𝑇𝑇𝐹𝑃
 Lifetime reliability-aware strategy

 E.g., mitigate aging speed

Our Focus

 Full replication and speedup
 Simple and easy to implement

 DVS−based strategy
Widely explored

 Lifetime reliability-aware strategy
Widely explored

 Partial replication and speedup
 A few works, lack a specific strategy

So Partial replication and speedup is our concern

Our Heuristic Algorithm

Start

Calculate 𝑀𝑇𝑇𝐹𝑃(𝑆𝑒𝑡𝑢𝑝𝑐𝑢𝑟)
and 𝑀𝑇𝑇𝐹𝑇(𝑆𝑒𝑡𝑢𝑝𝑐𝑢𝑟)

𝛶𝑀𝑇𝑇𝐹𝑇(𝑆𝑒𝑡𝑢𝑝𝑐𝑢𝑟)
< 𝑀𝑇𝑇𝐹𝑃(𝑆𝑒𝑡𝑢𝑝𝑐𝑢𝑟)

Decide the best choice

(be replicated or sped up)

for every task in terms of

increasing Υ𝑀𝑇𝑇𝐹𝑇

End

Determine which task’s choice

should be actually adopted to

maximize ΔΥ𝑀𝑇𝑇𝐹𝑇

Update 𝑆𝑒𝑡𝑢𝑝𝑐𝑢𝑟

Initialize the system current

setup, denoted by 𝑆𝑒𝑡𝑢𝑝𝑐𝑢𝑟

Workload,

frequency,

wear state, etc

Y

N

Simulation Setup

 Hardware platform
 Alpha 21264 microprocessor, 5 frequency levels

 Synthetic, real-world app. based benchmarks
 Five sets of 20 randomly generated tasks

 Embedded System Benchmark Suite [Univ. of

Michigan] including
 Autom.-industrial, consumer-networking, telecom, mpeg

 Simulation tools
 HotSpot 5.0 [Univ. of Virginia], Xiang’s tool

 Algorithms used for comparison
 Random, full speed, full replication algorithms

 Energy-efficient and reliability-aware algorithm

[ACM TAES 2013]

Simulation Results

RA: random algorithm, FSA: full speed algorithm, FRA: full replication

algorithm, ERA: energy-efficient and reliability-aware algorithm, PRS:

Partial replication and speedup

Up to 85%

Simulation Results

RA: random algorithm, FSA: full speed algorithm, FRA: full replication

algorithm, ERA: energy-efficient and reliability-aware algorithm, PRS:

Partial replication and speedup

Up to 45%

Summary & Future Work

 Existing reliability-aware methods lack a uniform

metric to quantify lifetime and soft-error reliability

 We proposed an analytical approach to enable

the evaluation of two reliabilities

 We presented a framework and a heuristic

algorithm to maximize system availability
 Our framework: designed for all scenarios

 Our algorithm: designed for a specific scenario

 In the future, we will consider real-time systems

and multicore platforms

Thank you!

