A High Performance Reliable NoC Router

ASP-DAC 2016

Author: Lu Wang Sheng Ma Zhiying Wang

Background

- highly integrated chips
- Reliability challenges on NoC

Purpose

- permanent faults on router components
- High reliability, high performance and low cost

Related Work

BulletProof

N-modular redundancy techniques heavy hardware overhead

Vicis Router

low area cost error detection & system recovery

Pavan Poluri's design

low cost correction circuitry poor performance under heavy network

Contribution

Fault tolerant strategies on 4 main pipeline units

- Double routing strategy for the RC failure
- Default winner strategy for the VA failure
- Runtime arbiter selection strategy for the SA failure
- Double bypass bus strategy for the crossbar failure

Contribution

- Maintain performance in fault tolerance
- Pipeline optimization
- Routing algorithm
- Reliable NoC router
- High performance
- High reliability
- Low cost

Fault tolerant RC design

Fault detection circuitry for the RC

Invalid output

Fault tolerant VA design

VA fault scenario first step: Input VC arbiter is faulty

need tolerate fault

second step: Output VC arbiter is faulty

Flits can be re-allocated to other VCs

need avoid performance degradation

Fault tolerant VA design

Default winner strategy

Fault tolerant VA design

arbiter detection circuitry

Fault tolerant SA design

hardware redundancy:two parallel switch allocators

• Runtime arbiter selection strategy

- Fault tolerant crossbar design
- double bypass bus strategy

Performance Analysis

Saturation throughput comparison

(a) Average latency in Poluri's proposed reliable NoC router

(b) Average latency in our proposed fault tolerant router

Performance Analysis

Extra latency evaluation for different strategies

Reliability Analysis

Hardware consumption analysis

entire overhead: 9.8%

increase to 27% when in corporating the detection circuitry

Reliability Analysis

- Reliability comparison using SPF
- SPF

faults to cause a failure /area overhead

Architecture	Area	Faults to cause	SPF
		failure	
BulletProof	52%	3.15	2.07
Vicis	42%	9.3	6.55
Poluri's design	31%	15	11.4
Our reliable router	27%	21	16.5

Thank you!