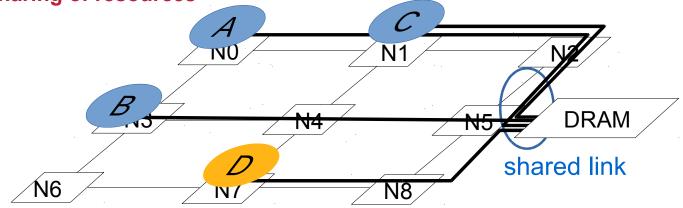


Dynamic Admission Control for Real-Time Networks-On-Chips

Adam Kostrzewa, Selma Saidi, Leonardo Ecco, Rolf Ernst TU Braunschweig

Motivation

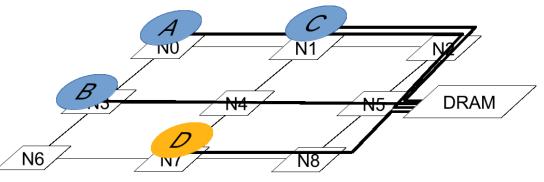

- today's many-core real-time systems
 - many integrated functions i.e. tasks and ECUs
 - networked control
 - many suppliers → heterogeneous

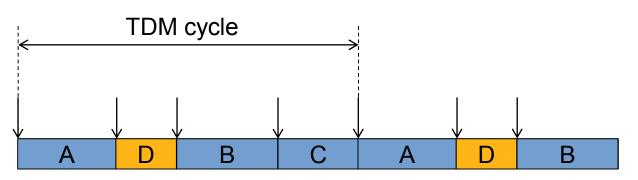
Motivation

- Networks-on-Chip are an efficient platform for systems integration
- Running transmissions compete for shared resources
 - Ink bandwidth or buffer space
- NoC must assure:
 - spatial and temporal independence isolation between interfering transmissions
 - efficiency of sharing of resources

Challenge \rightarrow Assuring predictable and efficient execution!

Outline


Motivation


- TDM-based arbitration for NoCs
- Our Solution Resource Manager
- RM's Predictability
- Experimental Evaluation
- Conclusions

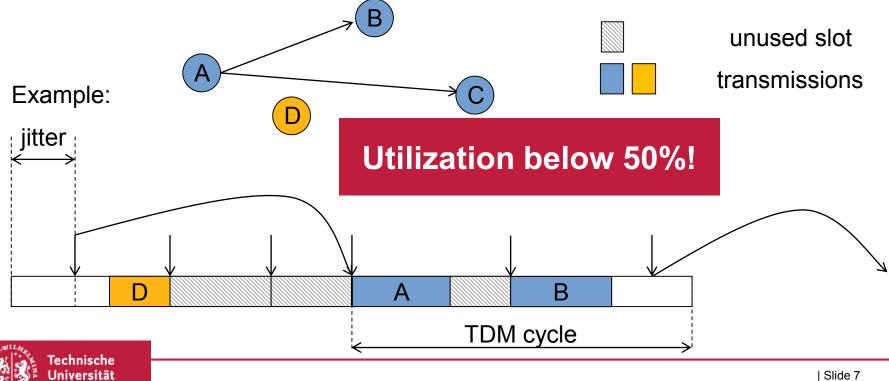
Time-Division Multiplexing

- TDM the most frequently deployed solution for enforcing isolation
- Resources are shared in time cyclic order
- Entire NoC is a globally shared resource
 - each application/transmission has a time slot
 - accesses granted in a cyclic o
 - exclusive access to NoC

TDM Advantages

- isolation temporal & spatial
- predictability and formal guarantees
 - compute the worst-case latency of a transmission \rightarrow deadlines
- relatively simple implementation
- transmissions acquire exclusive access to the NoC
 - designer may guarantee absence of contention
 - therefore, reduce hardware overhead
 - buffers, logic in routers
- relatively simple analysis

own transmission time


TDM with dynamics

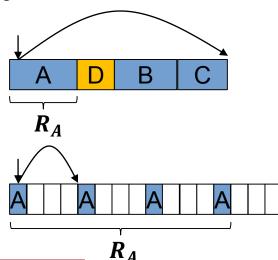
Problems: TDM is static and non work-conserving

unused slots are wasted

Braunschweig

- cannot cope with dynamics (e.g. data dependent execution)
 - release jitter, execution time, communication volume
- negative effects are amplified in case of task-chains

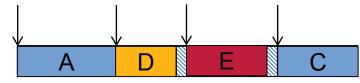
TDM Utilization


- efficient utilization is possible only if :
 - NoC is continuously requested (highly loaded)
 - under absence of dynamics
- this implies dedicated optimized/solutions
 - is it possible to get on core scheduling resulting in continuous accesses?
 - is it possible to fully exclude dynamics?
 - changes in toolchain, integrated components, porting to different platforms
- otherwise, low utilization and average latencies close to the worst-case
 - even in lightly loaded system

TDM is predictable but usually not efficient!

TDM Countermeasures

- overhead is proportional to the length of the cycle
 - number of integrated applications
 - Iength of the slots
 - NOT frequency of accesses
- decreasing the length of the TDM cycle by short slot-length
 - e.g. Æthereal



- distribution of longer transmissions over several cycles (even if NoC is free)
- underutilization of peripherals and modules
- e.g. too short transmissions towards SDRAM result in drastic increase of command overhead

TDM Countermeasures

- optimized TDM scheduling e.g. PhaseNoC or SurfNoC
 - replacing the cycle by cycle schedule with more flexible solutions e.g. domain oriented waves
 - decrease the gap between real access pattern and cyclic transmissions
 - increase complexity of the design
 - therefore hardware overhead and power consumption
- multiplexing of time-slots between channels e.g. Channel Trees

- no guarantees
- effectiveness depends on the number of VCs
- static budgets -> same problems as in case of TDM

Outline

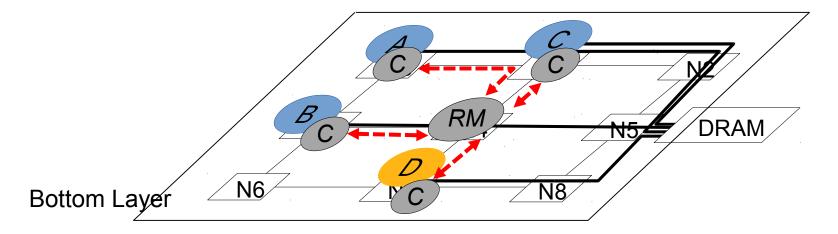
- Motivation
- TDM-based arbitration for NoCs
- Our Solution Resource Manager
- RM's Predictability
- Experimental Evaluation
- Conclusions

Our solution

Predictability

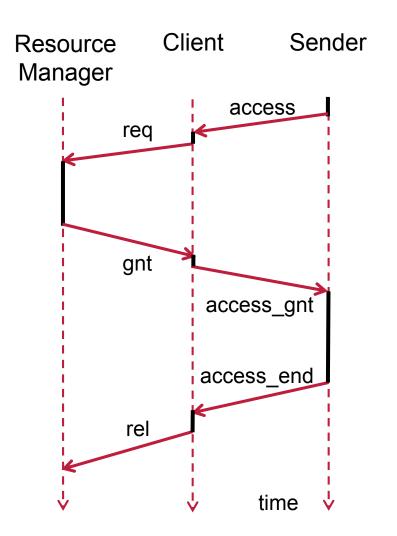
- isolation of whole transmission composed of multiple packets
- guarantees for the whole transmission instead of a single packet

Efficiency


- dynamically adapt arbitration to the current load
 - work conserving arbitration (round-robin based)
 e.g. skipping the slots of non-active senders
 - preserve locality of network transfers
 - DMA transfers towards DRAM
- Low implementation overhead
 - mechanism build on top of existing performance optimized networks
 - NoC as globally shared resource → small buffers
 - very little modifications of running components

Mechanism Description

- overlay network to decouple flow and admission control
- bottom layer low-level flow-control method in NoCs responsible for switching packets/flits
- virtual top layer global and dynamic arbitration
 - Clients admission control locally in nodes
 - RM central scheduling unit
 - protocol based synchronization


distributed network hypervisor

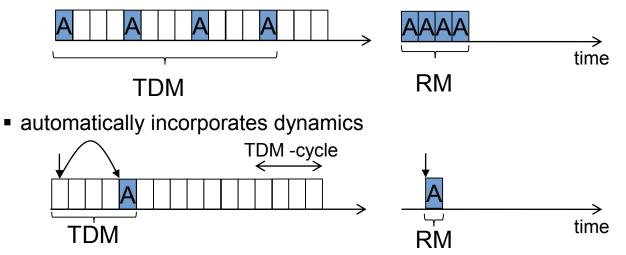
Workflow

- Sender starts trans. → access to the NoC
- Client traps this access
- Client sends a request to RM
- RM performs scheduling
- RM sends a grant to Client
- Client permits Sender to use the NoC (whole trans. == multiple packets)
- Sender conducts transmission
- Client detects end of the transmission (timeout monitor, last flit)
- Client sends a release to RM

Requirements

Bottom Layer

- work-conserving scheduling done locally in routers e.g. round-robin, iSLIP
- predictable behavior of routers
 - arbiters in routers must be analyzable with one of the existing analysis methods
- protocol-based synchronization requires safe communication channel
 - dedicated VC capable of giving latency guarantees
 - control NoC for maximum efficiency


Synchronized transmissions

- overlapping streams share resources buffers and links
 - share at least one link path-based arbitration
 - on the same Virtual Channel

Advantages

- work-conserving scheduling done
 - blocking proportional frequency of transmissions
 e.g. multiple transmissions from the same sender if the network is free

- no need to modify routers
- useful for synchronization of longer transmissions
 - DMA-based memory transfers

Outline

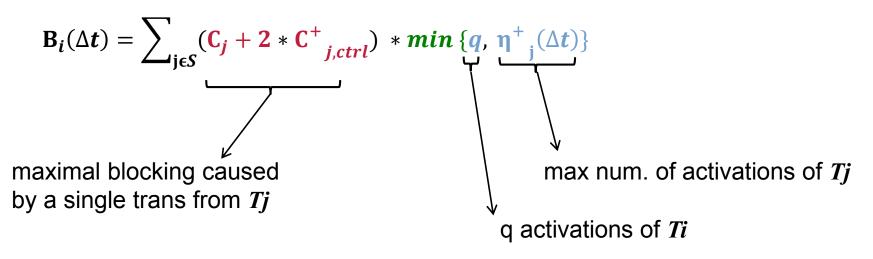
- Motivation
- TDM-based arbitration for NoCs
- Our Solution Resource Manager
- RM's Predictability
- Experimental Evaluation
- Conclusions

Predictability

- mechanism description \rightarrow mathematical model
- calculate the worst-case latency of a transmission
- validate against the deadlines
- busy window approach
 - assuming maximal activation rate of synchronized senders
 - and arbitrary activation patterns of transmission
- transmissions abstracted with event models
 - η⁺ (Δt), η⁻ (Δt) maximum and minimum number of initiated transmissions during time period Δt
 - framework: Compositional Performance Analysis (CPA)
- we focus on the top-layer applying the round-robin scheduling overview details in the paper

Predictability

• the worst-case time necessary to conduct q transmissions (w⁺, (q))


 $w^{+}_{i}(q) = q * C^{+}_{i} + 3q * C^{+}_{i,ctrl} + B_{i}(w^{+}_{i}(q))$ duration of q trans. protocol overhead (three ctrl. msgs. per transmission (req, ack, rel))

the maximum blocking resulting from scheduling of other synchronized transmissions

Predictability

 blocking time which q requests experience in a time window Δt can be bounded by:

- *min* function is to denote that transmissions from *Tj* cannot block *Ti* more than:
 - q times that *Ti* is activated
 - η^+_i number of its own (*Tj*) activations

Outline

- Motivation
- TDM-based arbitration for NoCs
- Our Solution Resource Manager
- Predictability
- Experimental Evaluation
- Conclusions

Experimental Evaluation

- simulations
 - OMNeT++ event-based simulation framework
 - HNOCS library
- CHSTONE benchmarks
- comparison with
 - **TDM with long slots** slot size adjusted to the duration of entire transmission

$$\mathbf{s}_i = \mathbf{C}^+_i$$

• **TDM with short slots** – slot size adjusted to the network latency of a single packet

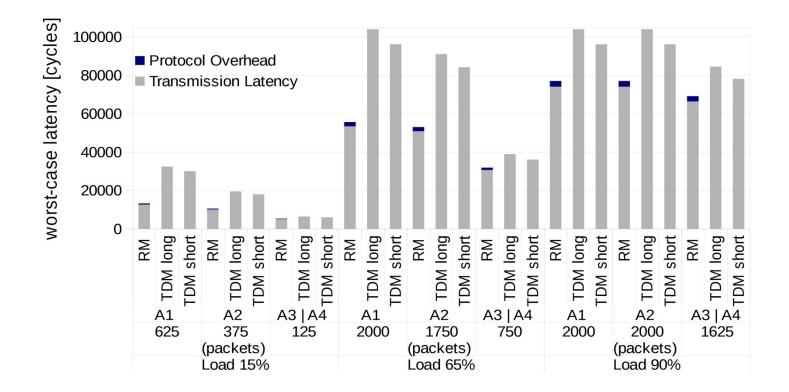
$$\mathbf{s}_i = \mathbf{C}^+_{i,pkt}$$

CHSTONE benchmark

MA TDM-Long fadd

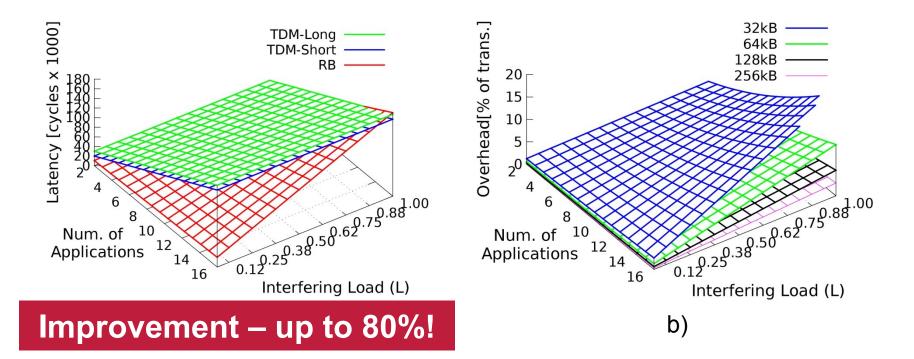
Experimental Evaluation

analytical experiments

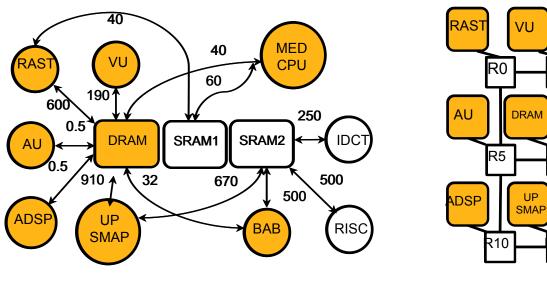

- **pyCPA** analysis framework
 - pragmatic Python implementation of Compositional Performance Analysis
 - worst-case timing analysis
 - using event models
- synthetic and MPEG-4 as benchmarks
- comparison with
 - TDM with long slots slot size adjusted to the duration of entire transmission

$$\mathbf{s}_i = \mathbf{C}^+_i$$

• TDM with short slots – slot size adjusted to the network latency of a single packet $s_i = C^+_{i,pkt}$


Worst-Case Guarantees (1)

Analytical comparison of worst-case latency guarantees for applications (A1-A4) generating different NoC load.


Worst-Case Guarantees (2)

Worst-case guarantees for a burst of 16 transmission with jitter = 10%P (a) Transmission latency and (b) Protocol overhead resulting from RM.

MPEG-4 Use-case

a)

b)

R12

RB

SRAM1

R1

R6

MED CPU

SRAM2

BAB

R3

R8

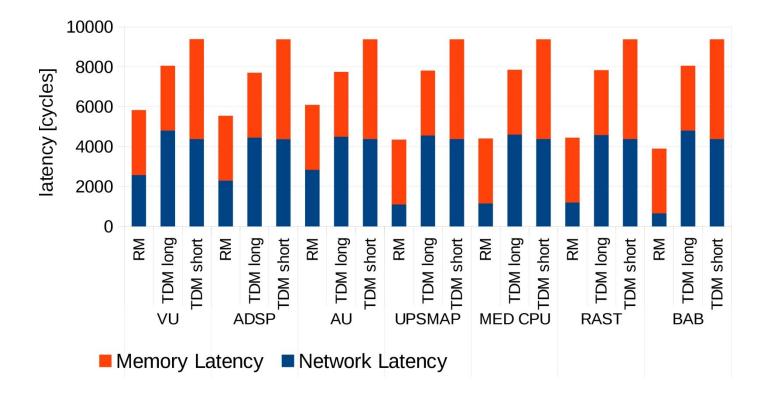
R13

IDCT

RISC

R4

R9


R2

R7

- MPEG-4 average communication demands specified in MB/s (a) and mapping (b).
- Locality of memory transfers
 - reduction of DRAM command overhead
 - arrival order of packets in DMA transfer must be assured e.g. 8kB uninterrupted transfers for DDR3-1600 DRAM

MPEG-4 Memory Locality

Effect of memory locality on the total transmission latencies for MPEG-4 module using TDM and RMs.

Outline

- Motivation
- TDM-based arbitration for NoCs
- Our Solution Resource Manager
- RM's Predictability
- Experimental Evaluation
- Conclusions

Conclusions

- new method for safe sharing of resources in NoCs
- global and dynamic arbitration
 - work-conserving scheduling
- high predictability
 - proved through the formal worst-case analysis
- Iow-hardware overhead
 - no modifications of routers
 - possibility of software implementation
- significant improvement over TDM-based solutions

Thank you for your attention! **Questions?**

