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Motivation

 today’s  many-core real-time systems

 many integrated functions i.e. tasks and ECUs

 networked control

 many suppliers  heterogeneous
ACC

ESP

entertainment

source: Volskwagen
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 Networks-on-Chip are an efficient platform for systems integration

 Running transmissions compete for shared resources 

 link bandwidth or buffer space

 NoC must assure: 

 spatial and temporal independence isolation between interfering transmissions

 efficiency of sharing of resources

Motivation

Challenge  Assuring predictable and efficient execution!

N1 N2N0

N4 N5N3

N7 N8N6
shared link

DRAM
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Time-Division Multiplexing

 TDM the most frequently deployed solution for enforcing isolation

 Resources are shared in time – cyclic order

 Entire NoC is a globally shared resource 

 each application/transmission has a time slot

 accesses granted in a cyclic order

 exclusive access to NoC

TDM cycle

A D CB A D B
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 isolation - temporal & spatial

 predictability and formal guarantees 

 compute the worst-case latency of a transmission  deadlines

 relatively simple implementation

 transmissions acquire exclusive access to the NoC

 designer may guarantee absence of contention

 therefore, reduce hardware overhead

 buffers, logic in routers

 relatively simple analysis

TDM Advantages

𝑹𝒊 = 𝑪𝒊 + 𝐭 − 𝐬𝒊 ∗
𝑪𝒊
𝐬𝒊

own transmission time
other slots

max. num. of slots required

𝐭 – duration of whole TDM-cycle

𝐬𝒊 – duration of time slot for 𝒊
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TDM with dynamics

jitter

D A B

Problems: TDM is static and non work-conserving

 unused slots are wasted 

 cannot cope with dynamics (e.g. data dependent execution)

 release jitter, execution time, communication volume

 negative effects are amplified in case of task-chains

Example:
A

D

transmissions

unused slot

TDM cycle

Utilization below 50%!

B

C
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 efficient utilization is possible only if :

 NoC is continuously requested (highly loaded)

 under absence of dynamics

 this implies dedicated optimized/solutions

 is it possible to get on core scheduling resulting in continuous accesses?

 is it possible to fully exclude dynamics?

 changes in toolchain, integrated components, porting to different platforms

 otherwise, low utilization and average latencies close to the worst-case

 even in lightly loaded system

TDM Utilization

TDM is predictable but usually not efficient!
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 overhead is proportional to the length of the cycle

 number of integrated applications

 length of the slots

 NOT frequency of accesses

 decreasing the length of the TDM cycle by short slot-length 

 e.g. Æ thereal

TDM Countermeasures

A D CB

A A A A

 distribution of longer transmissions 

over several cycles (even if NoC is free)

 underutilization of peripherals and modules 

 e.g. too short transmissions towards 

SDRAM result in drastic increase of 

command overhead

𝑹𝑨

𝑹𝑨
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 optimized TDM scheduling e.g. PhaseNoC or SurfNoC

 replacing the cycle by cycle schedule with more flexible solutions

e.g. domain oriented waves

 decrease the gap between real access pattern and cyclic transmissions

 increase complexity of the design

 therefore hardware overhead and power consumption

 multiplexing of time-slots between channels e.g. Channel Trees 

 no guarantees 

 effectiveness depends on the number of VCs

 static budgets -> same problems as in case of TDM

TDM Countermeasures

A D CE
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Our solution

 Predictability

 isolation of whole transmission composed of multiple packets

 guarantees for the whole transmission instead of a single packet

 Efficiency 

 dynamically adapt arbitration to the current load

 work conserving arbitration (round-robin based)

e.g. skipping the slots of non-active senders

 preserve locality of network transfers

 DMA transfers towards DRAM

 Low implementation overhead

 mechanism build on top of existing performance optimized networks

 NoC as globally shared resource  small buffers

 very little modifications of running components
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 overlay network to decouple flow and admission control

 bottom layer – low-level flow-control method in NoCs

responsible for switching packets/flits

 virtual top layer – global and dynamic arbitration

 Clients - admission control locally in nodes

 RM – central scheduling unit

 protocol based synchronization

Mechanism Description

N1 N2N0

N4 N5N3

N7 N8N6

DRAM

Bottom Layer

distributed network hypervisor

RM

C C

C

C
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 Sender starts trans.  access to the NoC

 Client traps this access

 Client sends a request to RM

 RM performs scheduling

 RM sends a grant to Client

 Client permits Sender to use the NoC

(whole trans. == multiple packets)

 Sender conducts transmission

 Client detects end of the transmission

(timeout monitor, last flit)

 Client sends a release to RM

Workflow

req

Resource

Manager

Client

time

Sender

gnt

access

access_end

rel

access_gnt
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Requirements

Bottom Layer

 work-conserving scheduling done locally in routers e.g. round-robin, iSLIP

 predictable behavior of routers

 arbiters in routers must be analyzable with one of the existing analysis methods

 protocol-based synchronization requires safe communication channel

 dedicated VC capable of giving latency guarantees

 control NoC for maximum efficiency

Synchronized transmissions

 overlapping streams share resources – buffers and links

 share at least one link – path-based arbitration

 on the same Virtual Channel
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Advantages

 work-conserving scheduling done

 blocking proportional frequency of transmissions 

e.g. multiple transmissions from the same sender if the network is free 

 automatically incorporates dynamics

 no need to modify routers

 useful for synchronization of longer transmissions

 DMA-based memory transfers

A A A A AAAA

TDM RM

A A

TDM -cycle

RMTDM

time

time
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 mechanism description  mathematical model

 calculate the worst-case latency of a transmission

 validate against the deadlines

 busy window approach 

 assuming maximal activation rate of synchronized senders

 and arbitrary activation patterns of transmission 

 transmissions abstracted with event models 

 𝛈+ (Δ𝒕), 𝛈− (Δ𝒕) maximum and minimum number of initiated transmissions

during time period 𝚫𝐭

 framework: Compositional Performance Analysis (CPA)

 we focus on the top-layer applying the round-robin scheduling overview – details in the 

paper

Predictability
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 the worst-case time necessary to conduct q   transmissions (𝐰+
𝒊
𝐪 )

Predictability

𝐰+
𝒊
𝐪 = 𝐪 ∗ 𝐂+

𝒊
+ 𝟑𝐪 ∗ 𝐂+

𝒊,𝒄𝒕𝒓𝒍
+ 𝐁𝒊 𝐰

+
𝒊
𝐪

duration of q trans.

protocol overhead (three ctrl. 

msgs. per transmission (req, ack, rel))

the maximum blocking resulting from scheduling

of other synchronized transmissions
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 blocking time which q requests experience in a time window Δt 

can be bounded by:

 𝒎𝒊𝒏 function is to denote that transmissions from Tj cannot block Ti more than: 

 q times that Ti is activated

 𝛈+
𝐣
number of its own (Tj) activations

Predictability 

𝐁𝒊 Δ𝒕 = 
𝐣𝛜𝑺
(𝐂𝒋 + 𝟐 ∗ 𝐂

+
𝒋,𝒄𝒕𝒓𝒍
) ∗ 𝒎𝒊𝒏 {𝒒, 𝛈+

𝐣
Δ𝒕 }

maximal blocking caused 

by a single trans from Tj

q activations of Ti

max num. of activations of Tj
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Experimental Evaluation

 simulations

 OMNeT++ event-based simulation framework

 HNOCS library

 CHSTONE benchmarks

 comparison with

 TDM with long slots – slot size adjusted to the duration of entire transmission

𝐬𝒊 = 𝐂
+
𝒊

 TDM with short slots – slot size adjusted to the network latency of a single packet

𝐬𝒊 = 𝐂
+
𝒊,𝒑𝒌𝒕
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CHSTONE benchmark

Latencies of CHSTONE benchmark TDM and RMs.
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Experimental Evaluation

 analytical experiments 

 pyCPA analysis framework

 pragmatic Python implementation of Compositional Performance Analysis

 worst-case timing analysis

 using event models

 synthetic and MPEG-4 as benchmarks

 comparison with

 TDM with long slots – slot size adjusted to the duration of entire transmission

𝐬𝒊 = 𝐂
+
𝒊

 TDM with short slots – slot size adjusted to the network latency of a single packet

𝐬𝒊 = 𝐂
+
𝒊,𝒑𝒌𝒕
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Worst-Case Guarantees (1)

Analytical comparison of worst-case latency guarantees for

applications (A1-A4) generating different NoC load.
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Worst-Case Guarantees (2)

a) b)

Worst-case guarantees for a burst of 16 transmission with jitter = 10%P

(a) Transmission latency

Improvement – up to 80%!

and (b) Protocol overhead resulting from RM.
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MPEG-4 Use-case

 MPEG-4 average communication demands specified in MB/s (a) 

and mapping (b).

 Locality of memory transfers

 reduction of DRAM command overhead 

 arrival order of packets in DMA transfer must be assured 

e.g. 8kB uninterrupted transfers for DDR3-1600 DRAM

a) b)
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MPEG-4 Memory Locality

Effect of memory locality on the total transmission 

latencies for MPEG-4 module using TDM and RMs.
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Conclusions

 new method for safe sharing of resources in NoCs

 global and dynamic arbitration 

 work-conserving scheduling

 high predictability 

 proved through the formal worst-case analysis

 low-hardware overhead

 no modifications of routers

 possibility of software implementation

 significant improvement over TDM-based solutions

Thank you for your attention!

Questions?


