21st Asia and South Pacific Design Automation Conference (ASP-DAC 2016)

A Hierarchical Management Strategy Based on Folded Torus-Like NoC for Dark Silicon Many-Core Systems

Speaker: Lei Yang Weichen Liu Weiwen Jiang Mengquan Li Juan Yi and Edwin H.M Sha

CACS: Center of Advanced Computing Systems cacs.cqu.edu.cn

leiyang@cqu.edu.cn

Jan. 28. 2016

Chongqing University

1. Introduction

2. Motivation

3. Physical and Logical View

4. Hierarchical Organization of FoToNoC

5. Cluster Management Strategy

6. Performance Evaluation

7. Conclusion

Dark Silicon has come.....

Utilization wall:

With each successive process generation, the percentage of a chip that can actively switch drops exponentially due to power constraints.

System scaling theory

Experimental result

What we observed everyday

Introduction

Utilization wall:

With each successive process generation, the percentage of a chip that can actively switch drops exponentially due to power constraints.

System scaling theory

- Slow voltage/capacitance scaling
- Non-balanced transistor/power budget scaling
- System exponentially scaling

Experimental result

What we observed everyday

, ,
2

q	Δ Quantity	S^2
nite	Δ Frequency	S
-lin ling	Δ Capacitance	1/S
cage Scal	V_{DD}^2	1
,eak	$\rightarrow \Delta$ Power = $\Delta QFCV^2$	S^2
	$\rightarrow \Delta$ Utilization = 1/Power	$1/S^{2}$

Introduction

Utilization wall:

With each successive process generation, the percentage of a chip that can actively switch drops exponentially due to power constraints.

What we observed everyday

8-nm node:

>50% of the chip area will be dark

[Ref] M. Shafique, etc. The eda challenges in the dark silicon era: Temperature, reliability, and variability perspectives. In Proceedings of the 51st Annual De-sign Automation Conference, DAC '14, pages 185:1-185:6, New York, NY, USA, 2014. ACM.

Introduction

Utilization wall:

With each successive process generation, the percentage of a chip that can actively switch drops exponentially due to power constraints.

- System scaling theory
 - **Experimental result**

- What we observed everyday
 - Battery limited system
 - Increasing power density
 - Chip hotspot

What is dark silicon?

avoid overheating

cannot be powered-on all at the nominal operating voltage for a given TDP constraint

fraction of cores should be 'Dark' or 'Dim'

How to deal with dark silicon?

Leverage dark silicon to fight the utilization wall

When & Which

Motivation

2

8*8 Alpha 21264 core array

Dark Silicon is 50%

8*8 Alpha 21264 core array

VS.1 Peak Temperature:

80 °C 82.17 °C 82.15 °C 72.81 °C 75.67 °C

Motivation

Physical and Logical View

Goals:

- Reduce long-distance communication and Achieve high performance
- Guarantee low power consumption and safe temperature

8*8 Alpha 21264 core array

Physical and Logical View

Goals:

- Reduce long-distance communication and Achieve high performance
- Guarantee low power consumption and safe temperature

Physical and Logical View

Goals:

- Reduce long-distance communication and Achieve high performance
- Guarantee low power consumption and safe temperature

FoToNoC : collaboration on clustered *Folded Torus-like NoC*

Hierarchical Organization of FoToNoC

Logical Interconnection Transformation

-(36)-

(28)

(34)

26)

-38)

-(30)

- Step 1: Equivalent topology transform
 - -- Stretching
 - -- Conversion

Step 2: Virtually remove curve links

- --(1, 2), (9, 10), (7,8)...,(63,64), (57, 58)
- --(1, 9), (3, 11), (2,10)...,(54,62), (56,64)

Step 3: Four clustered

-- Little (L): Low energy consumption-- Big (b): High performance

Cluster type	Freq (GHz)	Cache level	Power (W)	Area (mm^2)			
L	3.0	L2	3.715	0.816			
M1	3.5	L2	6.544	1.046			
M_2	4.0	L2	19.691	1.086			
b	4.5	L2	28.808	1.178			
Technology node: Alpha 21264 cores in 22-nm technology.							
Power: Per-core power from McPAT [4].							

Hierarchical Organization of FoToNoC

Cluster Management Strategy

Main CMS:

1) Application T arrives.

2) Application T finishes on cs at freq.

```
Algorithm 1 Cluster Management Strategy (CMS)
       (bool, ID, freq, t_{start}) = Cluster\_Manager(AC, T, \Gamma)
  1. Sort active cluster set AC in ascending order by frequency;
 2. cs_{min} \leftarrow the cluster in CS - AC with the lowest frequency;
3. for cs in ordered list AC do
          (flag, f_{req}, t_{start}) = Map\_to\_Cluster(\mathcal{T}, id(cs), \Gamma);
if flag = 1 or (flag = 0 and f_{req} < f_{id(cs)}) then
return (TRUE, id(cs), \max\{f_{id(cs)\_min}, f_{req}\}, t_{start});
else if flag = 0 then
  4.
5.
  6.
  7.
                 TMP_{ID} = id(cs); break;
          end if
 10. end for
11. for cs in ordered fist CS - AC do
          (flag', f'_{reg}, t'_{start}) = Map\_to\_Cluster(\mathcal{T}, id(cs), \Gamma);
if flag' = 0 then
12.
13.
14.
                 break:
15.
          else if flag' = 1 then
                 return (TRUE, id(cs), f'_{reg}, t'_{start});
16.
          end if
 17.
 18. end for
19. if flag = 0 then
          return (TRUE, TMP_ID, f_{ID\_min}, t_{start});
20.
21. else
22.
          return (FALSE, -1, -1, -1);
23. end if
```


VS.1 Application Performance:

Application performance: 39.44% higher

VS.2 Thermal distribution:

Thermal states on Mesh

Thermal states on folded torus

VS.3 System Energy Consumption:

Task For Free Applications

Realistic H.264
Benchmark Applications

$Rate_in$	NCMS		n NCMS CMS		E_{Impv}		Rate_in
(apps/s)	R_{NC}	E_{NC}/\mathcal{J}	R_C	E_C/J	(%)		(apps/s)
0.0017	0.00%	17988.72	0.00%	10844.15	39.72%	1	0.0017
0.0020	0.00%	25361.99	0.00%	11893.03	53.11%		0.0020
0.0025	0.00%	20313.29	0.00%	12337.59	39.26%		0.0025
0.0031	5.88%	23527.44	0.00%	12482.4	46.95%		0.0031
0.0036	5.88%	22876.37	0.00%	17523.37	23.40%		0.0036
0.0040	11.76%	24390.85	0.00%	9626.71	60.53%		0.0040
0.0045	11.76%	19487.82	5.88%	16675.62	14.43%		0.0045
0.0050	11.76%	22117.87	5.88%	15743.38	28.82%		0.0050
0.0056	23.53%	21357.88	5.88%	14129.43	33.84%		0.0056
0.0059	5.88%	26297.28	5.88%	10278.83	60.91%		0.0059
0.0077	23.53%	18347.37	5.88%	14645.48	20.18%		0.0077
0.0100	35.29%	21134.16	23.53%	14653.93	30.66%		0.0100
0.0125	35.29%	22930.42	29.41%	7054.49	69.24%		0.0125
0.0200	47.06%	20199.93	23.53%	9867.29	51.15%		0.0200
0.0250	52.94%	14456.66	41.18%	7895.71	45.38%		0.0250
0.0500	70.59%	12052.38	47.06%	8460.49	29.80%		0.0500
0.1000	70.59%	14001.3	52.94%	8751.58	37.49%		0.1000
Ave	45.02%		1				

NCMS CMS E_Impv n E_C / \mathcal{J} R_{NC} E_{NC}/\mathcal{J} R_C (%) 0.00% 13.33% 55627.40 35240.47 36.65% 6.67% 0.00% 35677.66 29.22% 50405.13 37.03% 13.33% 48461.13 6.67% 30517.30 26.67% 13.33% 45303.41 38423.93 15.19% 20.00% 53926.83 13.33% 48683.68 9.72% 20.00% 39837.72 13.33% 23.55% 30454.75 33.33% 49068.54 0.00% 61.23% 19022.54 53.33% 21497.72 13.33% 13117.73 38.98% 26.67% 45303.41 0.00% 29721.64 34.39% 40.00% 40445.12 0.00% 30607.98 24.32% 40.00% 40445.12 0.00% 25209.63 37.67% 53.33% 35586.83 6.67% 20859.35 41.38% 60.00% 18340.00 20.00% 12417.68 32.29% 60.00% 25262.84 60.00% 19610.16 22.38% 60.00% 26963.41 33.33% 12290.21 54.42% 66.67% 22105.12 60.00% 11370.27 48.56% 73.33% 22105.12 60.00% 10369.75 -53.09% Average energy consumption reduction 35.29%

System energy consumption: 45.02%, 35.29% lower

Performance Evaluation

VS.4 Chip Peak Temperature:

Peak temperature : 5.61 °C lower

Conclusion

Major Problem

- Fast increasing number of transistors
- Slow voltage/capacitance scaling
- Limited physical device cooling technology and heat dissipation ability
- Thermal management problem with long-distance communication

≻ We Solved

- Communication overhead reduction
- Application performance improvement
- System energy consumption reduction
- Chip temperature reduction
- Safe temperature reliability enhancing
- Trade-offs by Physical- Logical Isolation

Conclusion

Major Contribution

- Physical- Logical isolation in the dark silicon era:
 - -- Isolate and addressed the mixed design concerns of hierarchical H/W co-design
- *FoToNoC* architecture organization
 - -- Keep safe regarding temperature reliability via distributed core activation
 - -- Reduce communication overhead through "dark silicon-friendly" architecture
- Efficient clustered management strategies
 - -- Maximize the benefits of FoToNoC in the dark silicon era
 - -- Manage heterogeneous cores in clusters with DVFS
 - --Optimized chip temperature, application performance, system power consumption.

Conclusion

➢ Future Work

• Long-range links:

- -- Communication delay analysis
- -- Power consumption for on-chip communication
- Heterogeneous cores arrangement
 - -- Inter-cluster Heterogeneity instead of homogeneity
 - -- Number of the types of processing cores
 - -- Fine-grained run-time Voltage/Frequency scaling
 - -- Run-time task migration within/among clusters

Lei Yang leiyang@cqu.edu.cn Chongqing University