Optimal Co-Scheduling of HVAC Control and Battery Management for Energy-Efficient Buildings Considering State-of-Health Degradation

Tiansong Cui¹, Shuang Chen¹, Yanzhi Wang², Qi Zhu³, Shahin Nazarian¹ and Massoud Pedram¹ ¹University of Southern California, USA ²Syracuse University, USA ³University of California, Riverside, USA

> Presenter: Tiansong Cui 01/28/2016

Background: HVAC system – a large portion of energy consumption

The commercial and residential building stock is responsible for 40% of the U.S. primary energy consumption

HVAC system accounts for 50% of the energy consumption of a typical building

Background: The need for HVAC changes dynamically

The need for HVAC changes over hours and days

- As does the electric energy price
- Level of comfort of the building occupants is a primary concern
 - It tends to overwrite pricing

Dynamic HVAC control under a dynamic energy pricing model while meeting an acceptable level of occupants' comfort is thus critical to achieving energy efficiency in buildings in a sustainable manner

Background: Other equipments in energyefficient buildings

Some renewable source of power

Such as solar panels mounted on the rooftop

Battery energy storage system

- Enable peak power shaving by adopting a suitable charge and discharge schedule for the battery
- Simultaneously meet building energy efficiency and user satisfaction

Contribution of This Paper

Addresses the co-scheduling problem of HVAC control and battery management

- Achieves energy efficiency
- Also accounts for the degradation of the battery stateof-health during charging and discharging operations
- A time-of-use dynamic pricing scenario is assumed and various energy loss components are considered
 - Global optimization framework targeting the entire billing cycle is presented
 - An adaptive co-scheduling algorithm is provided to dynamically update the optimal HVAC air flow control and the battery charging/discharging decision in each time slot during the billing cycle to mitigate the prediction error of unknown parameters.

Problem setup

We consider a period of N time slots, given
Initial building temperature condition
Dynamic energy price
Initial and target state-of-charge (SoC) levels
PV generation and building load (predicted)

Objective:

 Find optimal HVAC control and battery charging/discharging decision of each time slot
 Minimize the total cost for all time slots

Constraints:

Must meet the building temperature constraints

- Must meet the target SoC level at the end of this period
- The prediction error complicates the problem

An Example of Adaptive Control Algorithm

At the beginning of the 1st time slot: Set the initial SoC level and initial temperature

 Find the optimal HVAC control and battery management for all future time slots

 Only the 1st hour decision will be applied, others might be updated later

An Example of Adaptive Control Algorithm

When the 1st time slot unfolds:

 Based on the actual PV generation and building load, the battery SoC level and building temperature is updated

An Example of Adaptive Control Algorithm

At the beginning of the 2nd time slot: Opdate the SoC level and building temperature

Find the optimal decision for all future time slots

Repeat this process until we reach the end of the period

Experimental Setup

We adopt the electricity pricing policy from Consolidated Edison Company

- The building temperature model is extracted from a building located at 1084 Columbia Ave
- We use PV power profiles measured at Duffield, VA, in the year 2007
- Battery models come from previous papers
- We assume a maximum of 20% prediction error

Experimental Results

Baseline1: HVAC system without battery

Baseline2: greedy decision: battery will be charged to the maximal SoC level during off-peak hours, and discharged to the minimal SoC level during peak hours

Energy cost is significantly reduced in our proposed solution

As SoH degradation is considered, charging/discharging is smoothened

Thank you

Presenter: Tiansong Cui 01/28/2016