Feature Extraction from Design Documents to Enable Rule Learning for Improving Assertion Coverage

Kuo-Kai Hsieh, Sebastian Siatkowski, Li-C. Wang University of California, Santa Barbara

> Wen Chen, Jayanta Bhadra NXP Semiconductors, Inc.

Background

Simulation-based RTL verification

- Monitor whether certain events happened or not
- Ideally we want 100% coverage
 - Record all the design behavior in simulation
 - Useful for analyzing design and debug

Rule Learning Applications

- To accelerate the verification process
- Given a event, find a rule composed of design signals that can infer the event

 $!(Sig_A = 1) \land (Sig_B = 0 \text{ to } 1) \rightarrow event happen$

Application examples

Event	Application	
Coverage points	Accelerate coverage closure	
Bug behaviors	Triage, debug assistance	

Key Challenge

- Feature/signal selection
 - The rule learning method works only for a small amount of signals
 - Limited by the amount of data
- Conceptual illustration of the issue
 - Suppose only A, B are relevant to the event E
 - Case 1, features are only A and B
 Need 4 samples to learn E = f(A, B)
 - Case 2, an irrelevant feature C is included
 Need 8 samples to learn E = f(A, B, C)

The amount of required data grows exponentially

More Challenges

Typically we want the selected signals to be

- Relevant to target events
- Understandable by human, have high-level meaning
- How people select the signals in practice?
 - It is a costly process

Extracting Signals from Documents?

- Typically we want the selected signals to be
 - ? Relevant to target events
 - V Understandable by human, have high-level meaning
- To accelerate the process of getting the relevant signals

Our Problems

How to extract signals from documents?

How does the extracted signals performs?

Overview of The Proposed Method

1. Signal extraction from design documents

- Goal :
 - Process design documents
 - Output the words that represent design signals

1. Tokenization

2. Part-of-speech tagging

3. Application specific filtering

 Select nouns, select all-capital words, select words with underscores, remove specific words, ...

Goal

Map the extracted words to the design signals, with signals' full hierarchy

ex. *sleep_req* → *chip_top.foo.bar.sleep_req*

Based on string matching

* Signal list can be obtained via commercial tools

Data Processing

 Convert simulation waveform to a data frame ready to the rule learning algorithm

Simulation

traces

Data

processing

- Remove duplicate timestamps
- Parameters are Boolean. They include "signal = v", "signal = v₁ to v₂"
- A coverage event may be asynchronous to the signals.

param1	param2	 paramN	Target cov.
1	0	1	0
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	0

Signals

rules

Rule

learning

Rule Learning

- Decision tree classifier
 - Iteratively find a parameter that can best split the current set of samples
 - The result rule is
 - The disjunction of all the leaf nodes having only positive sample if such nodes exist; otherwise,
 - The leaf node have the highest ratio of positive samples.

The leaf node maps to the rule: $(Sig_A = 1) \land (Sig_B = 0 \text{ to } 1)$

Experimental Environment

- Verification environment of a commercial dual-core SoC targeting ultra-low power applications
- Observed on 168 assertion coverage points
 - focusing on low-power features
 - developed by the verification engineers
- Worked on a 49-page PDF design document
 - describing low-power functionality
 - Written in natural language. No specific format.
- Data collection
 - 500 tests for training
 - Another 500 tests for validation

Signal Extraction Results

words after text mining71# words having signal mapping42# signals of the mapping result46

- 49-page PDF design document
- The words don't have signal mapping includes
 - The name of hardware modules
 - Design-specific abbreviation
- Observations
 - Two different words may map to the same design signal
 - A word may map to multiple design signal

Data Processing Results

- 46 design signals
- 300 parameters
- 500 training tests contribute to 9216 training samples
- Note: there are around 240k signals in the SoC
 - Dumping all the signals and processing all of them is infeasible

Rule Learning Results

- 168 assertion coverage points
- Obtained 100%-accurate rules for 64% assertion points

Further Improvement

Idea – increase rule accuracy

- learning from a smaller group of signals
- If a set of signals can infer a coverage point, it may be able to infer another coverage point

100%-accurate

$$\begin{array}{cccc} Cov1 & \longrightarrow & Rule 1 & & Signals 1 \\ Cov2 & \longrightarrow & Rule 2 & & Signals 2 & & \\ & & & & \\ & & & & \\ & & & & \\ CovN & \longrightarrow & Rule N & & Signals N \end{array}$$

Improved Rule Learning Results

- 38/58 coverage points have hit rate improvement
- Achieve 100%-accurate rules for 11 more points
 - Overall, 71% points have 100%-accurate rules

Conclusion

- It is expensive to apply rule learning methods without deep design knowledge.
- We proposed a signal extraction flow from the design documents.
- Experiments showed that the extracted signals can infer more than 70% coverage points with 100%accuracy.
- The set of the extracted signals provide a good starting point. It still takes effort to deal with the rest coverage points.