
1

Trust is good, Control is better:
Hardware-based Instruction-
Replacement for Reliable
Processor-IPs

Kenneth Schmitz
Arun Chandrasekharan
Jonas Gomes Filho
Daniel Große
Rolf Drechsler

University of Bremen and DFKI Bremen, Germany
kenneth@informatik.uni-bremen.de

2

Outline

3

Motivation

• Developing highly integrated Systems
 complex and challenging task

• Being ahead of competitors
 short time to market constraints

• Also: Larger product differentiation and
tighter cost margins

• Almost 60% of development time spend
on test and verification [Foster15]

Development . Test & Verification

4

IP-based Design

• Often, complex systems are assembled
from IP-cores

• Re-development time consuming
• Re-verification impractical due to missing

sources (if third party)
• This notion of “trust” is not good enough

for reliable systems

5

IP-Integration Flow

IP-Vendor

In-House IP

“Blackbox”

“Whitebox”

6

Handling Third-Party IP-Components

• System composed of building blocks which
implement unified interfaces (e.g. busses)

• During integration: One not-verified
instance could jeopardize the stability of
the entire system

• Container-Solution
– “The outside / inside is safe to handle”

7

Container Principle for SoCs

• The surrounding system is
protected from the
embedded component

(e.g. component stalls system bus)
[KD2014]

• The embedded component is
protected from the
surrounding system

(e.g. crypto cores leaking secret,
reverse engineering)
[CSKD15]

8

Container Principle for SoCs

Now: Instruction Replacement for blackbox
RISC-Processor IP-Cores

• Transparent and
Lightweight approach

(for Soft- and Hardware)

• Flexible and Extensible

9

Container Generation

• Objective
– Requirement

“Systems must be verified”
– Consequence

“Verifiable portion must be small”
• The container introduces little additional

logic and is constructed from a DSL
correct by construction.

(Strong argument, but container can be verified
since it introduces little logic overhead)

10

(Processor-) Container Generation

• Idea
– Instruction replacement prevents

erroneous executions
– Alternative approaches correct

response of the system or require
more insight

– When established:
• Approach completely transparent from

software perspective (and blackbox-
capable)

11

(Processor-) Container Architecture

• Instr. Screener
– Detects faulty

instruction
– Feeds “jalr” to defer

execution
• Addr. Screener

– Detects deferred
execution

– Feeds substitution
– Returns to regular

execution

12

(Processor-) Container Description

• DSL Template

DETECT: /∗erroneous instruction∗/
CORRECT_BEGIN:

/∗replacement code segment∗/
/∗Procedure :

check assembly code
backup assembly code
alternate compute assemblycode∗/

CORRECT_END:

13

Container Generation Flow

• Input: DSL-File, Design-Data

• Output: “Hardened” (more robust) System

14

Experimental Setup

• RISC-V (with / without container)
• Ported libraries (newlib)
• Same benchmarks in both executions
• Chisel-generated cycle accurate emulator

15

Results

• Algorithms / Programs
(square-root, Dhrystone, sort, etc.)
1. Number of cycles (reference /

replacement)
2. Increase factor

16

Results I
15

94

60
57

66
28

20
56

25
23

40
70

43
72

12

59
28

05
7

88
49

30 14
09

71
9

46
26

7

37
24

3

79
47

28
88

86
28

76
64

80

43
62

28
27

3

85
32

50
74

33

59
28

50
7

88
65

70 14
10

44
5

46
79

9

37
76

3

94
63

EXECUTION CYCLES
reference cycles replacement cycles

17

Results II
32

.4
1

31
.8

2

99
.1

2

51
.7

7

91
.1

5

51
.6

9

13
.5

7

0 0 0 0 0 0

INCREASED EXECUTION CYCLES

18

Conclusion

• In-Place Instruction Replacement for RISC
Processor-IP

• Easy-to-use IP-integration methodology
– Simple DSL-driven application
– Predictable speed degradation
– Negligible logic overhead (on FPGA)

(Registers: 0.07%, LUTs: 0.72%, Logic: 0.85%)

• Fast Verification of Container-Logic
Overhead

19

Trust is good, Control is better:
Hardware-based Instruction-
Replacement for Reliable
Processor-IPs

Kenneth Schmitz
Arun Chandrasekharan
Jonas Gomes Filho
Daniel Große
Rolf Drechsler

University of Bremen and DFKI Bremen, Germany
kenneth@informatik.uni-bremen.de

20

Benchmarks

Application
number of
mulw instr.

reference replacement increase correction
%cycles factor cycles

multiply 20 1594 2888 1.812 936 32.41
sqrt2 24 6057 8628 1.424 2745 31.82
sqrt3 567 6628 766480 115.642 759712 99.12
factorial1 60 2056 4362 2.122 2258 51.77
factorial2 147 2523 28273 11.206 25772 91.15
scalar 120 4070 8532 2.096 4410 51.69
Dhrystone 2005 437212 507433 1.161 68880 13.57
64-queens 0 5928057 5928507 1.000 0 0
quick-sort 0 884930 886570 1.002 0 0
reverse-sort 0 1409719 1410445 1.001 0 0
towers 0 46267 46799 1.011 0 0
vector-add 0 37243 37763 1.014 0 0
Dijkstra 0 7947 9463 1.191 0 0

	Trust is good, Control is better: Hardware-based Instruction-Replacement for Reliable Processor-IPs
	Outline
	Motivation
	IP-based Design
	IP-Integration Flow
	Handling Third-Party IP-Components
	Container Principle for SoCs
	Container Principle for SoCs
	Container Generation
	(Processor-) Container Generation
	(Processor-) Container Architecture
	(Processor-) Container Description
	Container Generation Flow
	Experimental Setup
	Results
	Results I
	Results II
	Conclusion
	Trust is good, Control is better: Hardware-based Instruction-Replacement for Reliable Processor-IPs
	Benchmarks

